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Summary  

Colorectal polyps and the cancerous lesions that can potentially develop from them are very 

important public health problems today, so their screening is extremely important. Several chal-

lenges have appeared in the scientific community of medical image processing, which focus on 

detecting, localizing, and segmenting these abnormalities. In my work, I aimed to achieve bet-

ter, more flexible, and more plausible processing of colonoscopy images. I utilized several pub-

licly available databases for conducting tests during my work. 

I proposed improvements for a polyp detection procedure that classifies colonoscopy im-

age segments using fuzzy rule interpolation to determine their polyp content. First, I presented 

alternative solutions for determining the rules based on the statistical properties of the training 

set with rules that fit the median or the histogram of its distribution instead of its mean, and 

then I examined the effects of dividing the output classes according to polyp content. 

I also studied possibilities for improving a procedure using Hough transformations for 

localizing roundish polyps. I suggested four modifications, aiming to reduce computational re-

quirements and increase tolerance to deviations from the circular shape. To reduce computa-

tional demands, I investigated the impact of the edge detection method used as the first step of 

the Hough transformation. I also analyzed the gradient distribution of polyp edges and other 

edges in the images to explore thresholding possibilities. Additionally, I introduced a weighting 

scheme into the Hough transformation that takes into account the gradients of edge pixels. To 

increase shape deviation tolerance, I proposed the application of fuzzy Hough transform. 

For the precise determination of localized polyp outlines, I tested two variational segmen-

tation methods. I investigated which pre-filtering methods best facilitate segmentation, how the 

initial mask's shape and size influence results, and which type of method, along with what pa-

rameter settings, yield the best outcomes. 
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Összefoglalás 

A kolorektális polipok, illetve az azokból potenciálisan kialakuló rákos elváltozások napjaink 

igen fontos népegészségügyi problémái, ezért szűrésük kiemelkedően fontos. Több olyan 

kihívás jelent meg az orvosi képfeldolgozással foglalkozó tudományos közösségben, mely ezen 

elváltozások lokalizálására, detektálására, szegmentálására irányul. Munkám során én is a 

kolonoszkópiai képek jobb, rugalmasabb, plauzibilisebb feldolgozását tűztem ki célul. Több 

nyilvános adatbázis érhető el, ezeket használtam a tesztek elvégzésére. 

Javítási lehetőségeket javasoltam egy olyan polip detektáló eljáráshoz, mely 

kolonoszkópiai felvételeket fuzzy szabályinterpolációs módszerrel osztályoz azok 

poliptartalmának megállapítására. Először a szabályoknak a tanítóhalmaz statisztikai 

tulajdonságai alapján való megállapítására mutattam be alternatív megoldásokat a 

mintaközépértéke helyett annak mediánjához, illetve eloszlásának hisztogramjához jobban 

illeszkedő szabályokkal, majd a kimeneti osztályok poliptartalom szerinti felosztásának hatásait 

vizsgáltam meg. 

Egy gömbölyded polipok lokalizálására alkalmas, Hough-transzformációkat használó 

eljárás javításának lehetőségeit is megvizsgáltam. Négy módosítást javasoltam egyrészt a 

számítási igény csökkentésére, másrészt a köralaktól való eltéréssel szembeni tolerancia 

növelésére. A számítási igény csökkentésére megvizsgáltam, milyen hatással van a Hough-

transzformáció első lépéseként végrehajtott éldetektálási eljárás típusa, másrészt 

megvizsgáltam, milyen gradiens eloszlással rendelkeznek a polipok élei, illetve a képeken 

előforduló más élek, és ez alapján az élek küszöbölési lehetőségeit vizsgáltam, harmadrészt egy 

olyan súlyozást vezettem be a Hough-transzformációba, mely az élek pixeleihez tartozó 

gradienseket is figyelembe veszi. 

Variációs szegmentálási módszereket vizsgáltam már lokalizált polipok körvonalainak 

pontosabb meghatározásának céljából. Megvizsgáltam, milyen előszűrési módok segítik elő 

legjobban a szegmentálást, azt, hogy a kiindulási maszk alakja, mérete hogyan befolyásolja az 

eredményeket, illetve hogy milyen típusú módszer, milyen paraméterbeállításokkal adja a 

legjobb eredményeket. 
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1. Introduction 

Colorectal polyps are abnormal growths that develop on the inner lining of the colon or rectum. 

While most polyps are benign and do not cause any symptoms, some polyps can potentially 

become cancerous over time. Colorectal cancer (CRC) is the third lethal cancer type and the 

fourth most common cause of cancer mortality worldwide, (depending on the year and the 

country where the statistics took place) (Ismail & Nagy, 2021). The survival rate of CRC 

depends on the stage it is detected in, going from rates higher than 95% in the case of early 

stages to rates lower than 35% in latter ones (Bernal J. , et al., 2015); hence, the prevention of 

CRC by finding and removing the so-called preneoplastic lesions (early-stage precancerous 

polyps or colorectal adenomas) is one of the most important worldwide public health studies 

and has a high priority in computer-aided diagnostic (CAD) systems research (Bernal, Sanchez, 

& Vilariño, 2012). 

Clinical guidelines based on medical practice as well as scientific evidence recommend 

that individuals who are over the age of fifty must undergo a regular examination. The 

conventional, classical, colonoscopy is the most precise visual inspection procedure for early 

colorectal cancer detection and prevention. A colonoscope, which is an endoscope equipped 

with a flexible tube, camera, light source, and other tools, can navigate within the bowel, and 

perform various tasks like inflating the bowel, spraying liquids, taking a biopsy, and removing 

lesions (Alam & Fattah, 2023), (Krenzer, et al., 2023). 

Several reputed studies with sufficiently large number of cases demonstrate that 

colonoscopy screening reduces the cancer’s incidence by 40–90%. During the colonoscopy 

procedure, its flexible tube with a camera is inserted into the colon and rectum to examine the 

inner lining, and if polyps are found, they can be removed or biopsied for further analysis, by 

this way, colonoscopy allows both the identification and the removal of such polyps, which are 

at their first step in the many years long process of developing “adenoma” to “high grade 

dysplasia” to “carcinoma,” i.e., the development of colorectal cancer (Bernal J. , et al., 2015), 

(Bernal, Sanchez, & Vilariño, 2012). 

However, colonoscopy has the following drawbacks. Before colonoscopy the patient 

must perform a thorough bowel cleansing, and the procedure itself is also rather inconvenient, 

which makes people less willing to sign up for colonoscopy screening. The procedure requires 

an expensive device and expert medical staff to carry out the examination. It also has a 

considerable risk of damaging the bowel wall; moreover, it is often carried out in anesthesia, 
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which has its own risk. Besides the costs and risks of the medical process, the most significant 

drawback is the reported high miss-rate of polyps, which can be as high as 22%. While 

colonoscopy is effective in detecting polyps larger than 10 mm, its accuracy decreases 

significantly for smaller or flat polyps (Bernal J. , et al., 2015), (Bernal, Sanchez, & Vilariño, 

2012). 

Colorectal polyps can be categorized based on their location to the layers of the bowel 

wall, as mucosa, muscular mucosa, and submucosa (Sziová, Ismail, Lilik, Kóczy, & Nagy, 

2020). Moreover, as polyp morphology might be useful for predicting the presence of invasive 

growth, a group of endoscopists, pathologists, and surgeons from Western and Japanese 

countries established an endoscopic classification system for polyp morphology in superficial 

neoplastic lesions in the colon, esophagus, and stomach. This classification, known as the Paris 

classification, divides polyps into several groups based on their endoscopic appearance, such 

as: pedunculated, sessile, slightly elevated, flat, slightly depressed and excavated (Vleugels, 

Hazewinkel , & Dekker , 2017). 

The Kudo classification was created in 1994 to describe the micro-architecture of 

epithelial pits, also known as pit patterns, seen during chromoendoscopy under high 

magnification (Kudo , Hirota, Nakajima, Hosobe, & Kusaka, 1994). Its purpose is to 

differentiate between non-neoplastic, adenomatous, and cancerous lesions. If the lesion surface 

has roundish pits (class A1) or stellar, asteroid, or papillary shaped pits (class A2), a light-pink 

color, and a regular pattern, then the polyp is not likely to develop into a malignancy. However, 

if the lesion has tubular shapes (class B3L) or extremely small roundish pits (class B3S), it has 

the potential to develop into a carcinoma and may show some discoloration under narrow light 

band imaging. Lesions with dark, dendritic, gyrus- or sulcus-like pit structures (class B4) are 

already in a cancerous state, as are irregularly shaped patterns with colors tending towards 

blackish and/or whitish (class B5) (Vleugels, Hazewinkel , & Dekker , 2017), (Nagy, Lilik, & 

Kóczy, 2017). 

The size of the colonic lesions is another important factor indicating the risk of cancer. 

Lesions measuring 1 to 5 mm (diminutive) have a very low risk of containing invasive growth, 

ranging from 0 to 0.1%. Small lesions measuring 6 to 9 mm have a risk ranging between 0 and 

0.4%. For lesions larger than 10 mm, the risk of cancer gradually increases. Lesions measuring 

between 10-20 mm have a risk of 2.4%, while polyps greater than 20 mm in size have the 

highest risk of 19.4% (Vleugels, Hazewinkel , & Dekker , 2017). 
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Even for experienced gastroenterologists, detecting polyps with the naked eye can be a 

challenging task, as some polyps may be very small in size or hidden in folds of the colon lining, 

in addition to various reasons like the inadequate intestinal preparation and doctor's visual 

exhaustion (Alam & Fattah, 2023), (Krenzer, et al., 2023), (Yue, et al., 2022). 

Developing a computer-aided diagnosis system using computational intelligence methods 

for colorectal polyps' medical tasks, (i.e., colorectal polyps' detection, localization, and 

segmentation) is currently one of the most demanding needs in the healthcare sector. Such a 

system would simplify the diagnostic process and facilitate the assessment of the examined 

cases severity. Although none of these intelligence methods are intended to replace human 

diagnosis, at least, not in the near future, but they definitely help the often-overloaded medical 

staff to collect and organize the available data for decision support. They can draw their 

attention to certain phenomena, identify and highlight potential polyps, and provide accurate 

measurements of polyps' size, location, and the degree of their severity (Alam & Fattah, 2023), 

(Krenzer, et al., 2023), (Yue, et al., 2022). 

By employing robust computer-aided diagnosis techniques, gastroenterologists can 

significantly enhance the accuracy and efficiency of colorectal cancer screening. This, in turn, 

enables early detection and timely treatment of polyps, thereby leading to a reduction in the 

incidence and mortality rates associated with colorectal cancer. 

1.1 Background 

By utilizing advanced image processing and computer vision techniques, many algorithms have 

been developed by researchers to automatically assist gastroenterologists in detecting, 

localizing, and segmenting polyps during colonoscopy. These algorithms vary from polyp 

shape or texture-based handcrafted methods to fully automated machine learning methods 

based on highly efficient neural networks, as well as the hybrid methods which combine both. 

Some of them are rather successful, but the possibility to apply them in real-life applications is 

still not near. 

Mostly, polyp characterization methods are based on the calculation of some feature 

descriptors over a tile of the image or the complete image. These descriptors support the 

decision of an intelligent system whether there is a polyp in the image (segment) or not, and 

often if there is a polyp, the location within the image (segment) is also determined. Two main 

groups of descriptors exist, the shape-based properties, and the texture-based ones. 
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The texture analysis is often used in the case of differential diagnosis as based on its 

surface texture the nature of the polyp can be determined (Kudo , Hirota, Nakajima, Hosobe, & 

Kusaka, 1994), (Horváth, Spindler, Szalai, & Rácz, 2016), (Rácz, et al., 2015), (Georgieva, 

Nagy, Kamenova, & Horváth, 2015). However, magnified endoscopy images are needed to 

perform this type of analysis, thus it is rarely used for the detecting the polyp; it is used after 

the polyp is already found. Polyps tend to have different patterns than the bowel walls which 

contain visible blood vessels too. Some works are based on the use of wavelet descriptors to 

extract this information (Karkanis, Iakodivis, Karras, & Maroulis, 2001), paying attention to 

the detail and approximation coefficients of the wavelet transform. Other alternatives include 

the use of local binary patterns (Häfner, et al., 2010) or co-occurrence matrices (Tan, et al., 

2020).  

On the other hand, shape-based approaches (Rácz, Jánoki, & Saleh, 2010), (Bernal, 

Sanchez, & Vilariño, 2012), (Bernal J. , et al., 2015), (Yuji, et al., 2015), (Bernal J. ,et al., 2017) 

aim to search in colonoscopy frames for those specific shapes that polyps commonly have, both 

in the intensity distribution and in the boundary shape. The first subgroup of such methods (i.e., 

the intensity distribution-based one) clusters a series of methods mostly consisting of low-level 

image processing operations such as gradient filters, valley information, or edge detectors. 

Whereas the second subgroup (i.e., the boundary shape-based one) assumes that polyps tend to 

have elliptical shape, or often close to the circular shape. 

Various machine learning and deep learning architectures have been currently developed 

as prominent solutions to automatize polyp detection and localization tasks and enhance their 

accuracy (Ahmad, Brandao, Sami, & et al., 2019), (Sornapudi, Meng, & Yi, 2019), (Wittenberg, 

Zobel, Rathke, & Mühldorfer, 2019). A method for real-time detection, classification, and 

localization of gastrointestinal tract disorders from colonoscopy images was presented in (Aliyi, 

Dese, & Raj, 2023). Both online available (hyper-Kvasir dataset) and private locally collected 

samples were utilized. The method was developed using the pre-trained transfer learning SSD, 

YOLOv4, and YOLOv5 object detection models, with minimal fine-tuning of the 

hyperparameters, and their final performances were compared. The utilization of the YOLOv5 

object detection algorithm and the artificial bee colony (ABC) optimization algorithm was 

proposed in (Karaman, et al., 2023). The YOLOv5 algorithm was employed for polyp detection, 

while the ABC algorithm was used to enhance the performance of the model by finding the 

optimal activation functions and hyperparameters for the YOLOv5 algorithm. The proposed 
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method was executed on the SUN and PICCOLO datasets and achieved good performance in 

real-time polyp detection. 

Different convolutional neural network (CNN) architectures were proposed and evaluated 

using different currently available public colonoscopy databases and a wide variety of 

convenient metrics in (Sánchez-Peralta, Bote-Curiel, Picón, Sánchez-Margallo, & Pagador, 

2020). The effectiveness of the proposed encoder-decoder ColonSegNet architecture, in 

conjunction with several deep learning methods was evaluated using the Kvasir-SEG database 

in (Jha, et al., 2021). Researchers in (Mo, Tao, Wang, & Wang, 2018) employed the faster 

region-based convolutional neural network (Faster RCNN) method with VGG16 as the 

backbone for polyp detection. An automated system based on a fusion of color wavelet features 

and convolutional neural network features along with the use of a support vector machine for 

polyp detection and localization was proposed in (Billah, Waheed, & Rahman, 2017). A 

combination of the existing deep neural network, DeepLab v3, with Long Short-Term Memory 

networks (LSTMs) was also presented in (Xiao, Chang, & Liu, 2018) for polyps' detection in 

colonoscopy images. 

One of the fundamental challenges in medical image processing is the limited number of 

training and testing database samples. Unlike the usual image classification tasks, the medical 

images cannot be processed by unskilled personnel, the preparation of the labeled ground truth 

masks need medical experts, that makes the creation of the medical databases very costly and 

time-consuming process. In addition legal, social, and ethical challenges come with managing 

personal data corresponding to the medical images. The above-mentioned facts clarify why the 

large training set based learning algorithms are not the only possibilities in medical image 

processing, but other approaches, such as expert knowledge based fuzzy inference are also 

preferable. 

In the past few years, a research team has been formed at Széchenyi István University 

that focuses on detecting and classifying colorectal polyps within colonoscopy image segments 

using a fuzzy inference-based strategy. These image segments either contain a complete polyp 

or at least a portion of it or they are completely empty regarding the polyps (Nagy, Lilik, & 

Kóczy, 2017), (Nagy, Sziova, & Koczy, 2018). The purpose of the fuzzy inference method 

developed in our group is to determine, whether an image segment that is not included in the 

training set contains areas belonging to polyp or not.  

The proposed strategy was based on comprehensive consultations with expert 

gastroenterologists and on the utilization of plausible statistical parameters and entropies of 
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image segments as antecedents, and finally, a fuzzy decision value was assigned to each 

segment. Subsequently, additional preprocessing methods and several antecedents were 

incorporated into the original strategy, and their effect was also explored (Nagy, Sziova, & 

Koczy, 2017), (Sziová, Nagy, & Kóczy, 2021). 

Even though fuzzy inference is not used by other groups in this field of medical image 

analysis, the previous results are somewhat promising, but leave place for further development. 

For the research presented in my dissertation, the continuous improvement and exploring 

of the fuzzy inference-based method was essential. My contribution was introducing new 

rulebase generation methods and more fitting consequents for colorectal polyp detection 

purposes using the stabilized Kóczy-Hirota rulebase interpolation method. 

As the classical circular Hough transform was already found to be successful in colorectal 

polyp localization task, to deal with the not perfectly circular shapes of the polyps and to 

improve the Hough transform’s tolerance for shape deviation, I studied the applicability of 

fuzzy Hough transform, together with special preprocessing methods and a gradient-based 

weighting approach in its voting methodology. 

As a last step, I also researched the colorectal polyp segmentation possibilities. One of 

the most effective, non artificial intelligent based segmentation methods is the active contours 

method. I tested the efficiency of two active contours methods and the necessary preprocessing 

steps to optimize their performance. 

1.2 Research methodology 

A comprehensive literature review has been carried out to establish a robust background 

on the research topic and to achieve the above mentioned goals, with an intense focus on the 

international contributions and recently developed algorithms together with the evaluation 

employed metrics in this interesting field. 

In this dissertation, three publicly available still colonoscopy image databases CVC-

Clinic (Bernal J. , et al., 2015), CVC-Colon (Bernal, Sanchez, & Vilariño, 2012), and Etis-Larib 

(Silva, Histace, Romain, Dray, & Granado, 2014) were used. Each of these databases contains 

a specific number of images, namely 612, 380, and 195, respectively. The colonoscopy images 

have different sizes, the dimensions of the images are 384 × 288, 574 × 500, and 1225 × 966 

pixels, and they have a resolution of 96, 72, and 72 dpi, respectively. Furthermore, the colour 

depth of the RGB color pictures is 24 bit per pixel. In addition to the frames, a ground truth 
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mask corresponding to the region covered by the polyp/ polyps in the image is also included in 

each database. 

The research methodology can be well organized by briefly listing the practical steps that 

were implemented and investigated in this dissertation as follows. 

❖ Utilizing computational intelligence methods through simple measured data that are 

easy to interpret by medical experts is very advantageous for computer-aided diagnosis 

systems. Based on the concept of fuzzy reasoning, if the rulebase is derived from 

plausible statistical parameters of the image being analyzed, it can be easily 

comprehended and accepted by society. Thus, a further development for a fuzzy 

inference-based strategy was carried out. Simple statistical parameters and entropies of 

image segments were used as rulebase antecedents. 

• Investigating the impact of determining the rulebase parameters on the efficiency of 

the detecting of the polyp segment using stabilized Kóczy-Hirota fuzzy rule 

interpolation. The performance of the proposed method was evaluated using the true 

positive rate (TPR), the false positive rate (FPR), the true negative rate (TNR) and 

the false negative rate (FNR) metrics. 

• Introducing more consequent classes in the colorectal polyp's detection approach to 

better align with real-world scenarios, and examining the effect of the refinement of 

the consequent categories in stabilized Kóczy-Hirota fuzzy rule interpolation. The 

number of the consequents was extended from two classes, (i.e.,  “with-polyp”, or 

“without-polyp”), to a more refined set distribution based on the polyp content of 

the image segment. Other metrics, namely accuracy (ACC), Matthews correlation 

coefficient (MCC) and F1 score were introduced for a more detailed evaluation. 

❖ Applying classical circular Hough transform was proven to be effective for some types 

of colorectal polyps. However, the polyps are very rarely perfectly circular, so more 

tolerance to shape uncertainty is needed. That was the reason why the switching from 

the classical circular Hough transform to the fuzzy circular Hough transform for the 

colorectal polyp's localization purposes was proposed. 

• Depending on statistical data from the three colonoscopy databases, the performance 

of four edge detection algorithms (Canny, Prewitt, Roberts, and Sobel) was 

compared, and the most ideal one that gave the most polyp contour related and least 

unnecessary edge points, i.e., the lowest number of points to be transformed, was 
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selected. Two metrics based on normalized gradients of contour and non-contour 

edges were developed to establish this selection. 

• According to a statistical study that has been performed during this research, in the 

colonoscopy images the polyp contours usually belong to gradient domain of neither 

too large, nor too small gradients, though they can also have stronger or weaker 

segments. To prioritize the gradient domain typical for the polyps, a relative 

gradient-based thresholding as well as a gradient-weighted voting approach was 

introduced. 

• Characterizing the roundness of the objects to be detected was applied for evaluating 

the improvement of the shape deviation tolerance of the classical and fuzzy Hough 

transforms using the maximum radial displacement and the average radius. 

❖ Considering the importance of segmenting detected polyps for achieving precise 

diagnosis, it was worth searching systematically, how colonoscopy databases are 

responding to two of the most influential variational segmentation methods, the 

geodesic and Chan–Vese active contour methods.  

• As the quality of colonoscopy databases varies, preprocessing steps were taken 

before evaluating 14 filtered images as inputs for the active contour methods. 

• The performance of the segmentation techniques was measured using the Sørensen-

Dice Similarity Coefficient. The effects of the initial mask shape and its size together 

with the number of iterations, contraction bias and smoothness factor were studied. 

 

Finally, it is worth mentioning that all steps formulated in this dissertation have been 

implemented by computer simulation in a MATLAB environment. All image processing, 

analyzing, and visualizing were performed using the powerful image processing toolbox as well 

as codes developed for the given purpose by me and our research group. 
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2. Colorectal polyps' detection on colonoscopy images using fuzzy inference 

2.1 Basic concepts of fuzzy classification 

2.1.1 Introduction to fuzzy sets 

Fuzzy set theory is a novel mathematical framework for dealing with uncertainty and 

imprecision. It was introduced by Lotfi A. Zadeh in 1965 (Zadeh, 1965) as an extension of 

classical set theory, with the aim of providing a formalism for representing and manipulating 

vague concepts. Fuzzy sets have been successfully applied in a wide range of fields, including 

artificial intelligence, control theory, decision analysis, pattern recognition, and many others. 

Fuzzy sets concept reflects the nature of the human thinking logic, where there are 

numerous or even infinite transitions or possibilities between the concepts such as the human 

characteristics like tall and short man, or the weather conditions like cold and hot weather. 

In contrast to classical sets, where an element either belongs or does not belong to a set, 

Zadeh's fuzzy sets theory emphasizes that the degree of an element's membership in a set is 

more important than simply determining whether it belongs to the set or not. Fuzzy sets were 

developed to allow partial membership degrees to be assigned to the set elements. These 

membership degrees are represented by real values ranging from fully belonging "1" to not 

belonging at all "0" (Zadeh, 1965). Figure 2-1 illustrates the difference between crisp and fuzzy 

membership functions. 

 

Figure 2-1 Examples of crisp and fuzzy membership functions 

 

2.1.2 Fuzzy inference 

Fuzzy inference systems as computing frameworks rely on fuzzy set theory to reach the con-

clusion and connect the system antecedents and consequents. A rulebase and a corresponding 
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inference engine make up a typical fuzzy inference system. Many types of inference systems 

have been developed since Lotfi A. Zadeh first came out with the idea of non-crisp sets (Zadeh, 

1965), (Zadeh, 1968); the most commonly utilized are the Mamdani inference in 1977 

(Mamdani, 1977), and the Takagi-Sugeno inference in 1985 (Takagi & Sugeno, 1985).  

The Mamdani fuzzy model is more intuitive and well-suited for linguistic input, as it 

consists of rules, like “IF… THEN ….” and the connection between the rules can be expressed 

with “AND” as the lowest of the membership values (called t-norm), and “OR” as the highest 

(called s-norm or t-conorm).  

The aggregated consequent fuzzy set arises as the s-norm, i.e., the maximum of the results 

for the whole model consequents, whereas the result for each individual consequent is the t-

norm, i.e., the minimum of the antecedents' rules belonging to that consequent. However, the 

outputs are often fuzzy sets, which makes a defuzzification step at the end necessary. An ex-

ample of an inference system with 2 antecedents and 2 consequents can be seen in Figure 2 - 2. 

 

Figure 2-2 Fuzzy inference system based on 2 antecedents. The dark membership 

functions demonstrate such antecedents, where the overlap between the supports of the rules 

is sufficient, while the orange rules give an example of sparse rulebase 

 

Unlike Mamdani-type fuzzy systems, which use fuzzy sets as outputs, the Takagi-

Sugeno-Kang (TSK) model is a type of fuzzy inference system that uses a set of fuzzy if-then 

rules and produces crisp outputs by computing weighted averages of the inputs for each rule. 

The rules in a Sugeno model have the form “if 𝑥 is 𝐴 and 𝑦 is 𝐵”, then 𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑟, where 

𝐴 and 𝐵 are fuzzy sets defined on the input variables 𝑥 and 𝑦, respectively, and 𝑝, 𝑞, and 𝑟 are 
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constants representing the linear coefficients and the offset of the linear function for the output 

variable 𝑧. The output of the Sugeno model is obtained by taking the weighted average of the 

outputs of all the rules, with the weights determined by the degree of match between the input 

values and the fuzzy sets defined in the if-part of the rules.  

A Mamdani or Takagi-Sugeno-Kang (TSK) rulebase styles can be derived from data or 

obtained based on professional experience. Both the Mamdani and the TSK inference models 

can only be used with dense rulebases that cover the whole domain of the relevant antecedents. 

However, the most commonly used triangular, gaussian, or trapezoidal rulebases, often fail to 

form a dense set of rules, which makes the above-mentioned inference systems not applicable 

for antecedents, where the measured value in at least one of the dimensions has zero member-

ship degree in all the rules, as it can be seen with the orange-colored rules in the first antecedent 

of Figure 2-2. 

 

2.1.3 Fuzzy rule interpolation 

The need for dense rulebases in classical fuzzy inference systems can be substituted by the 

application of fuzzy interpolation. Interpolation can be used efficiently to produce appropriate 

outputs when a given observation does not overlap with any rule. Fuzzy interpolation can also 

contribute to the minimization of the system complexity; it can eliminate rules that can be esti-

mated by the neighboring rules (Li, Yang, Qu, & Sexton, 2018). There are many interpolation 

approaches in fuzzy systems, and the stabilized Kóczy–Hirota inference method (SKH) method, 

which was developed in 1993, is one of the most important milestones (Koczy & Hirota, 1993), 

(Tikk, et al., 2002). 

This approach relies on the natural concept that when an observed value (even if it is 

fuzzy) is more similar to one of the antecedent rules, its output will also be more similar to the 

corresponding consequent. To apply this approach, it is essential to compute the distance be-

tween the observed value and the fuzzy sets. If the membership functions are simple triangular 

ones, this distance can be calculated by the characteristic points of the functions, such as the 

vertices of the corresponding triangle. 

Considering the nearest antecedent sets, SKH creates temporary rules for the domains not 

covered by any antecedent set for each observation. These new rules can be used only for the 

cases they were created for. The method calculates the infima and suprema of the characteristic 
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𝛼-cuts of the new fuzzy conclusion 𝐵∗ according to the Euclidean distances between the obser-

vation and the bounds of the characteristic 𝛼-cuts of the original antecedent sets and conclusion. 

The method itself is given by the following formulas 

 𝑖𝑛𝑓 𝐵𝛼
∗ =

∑ 𝑖𝑛𝑓 𝐵𝑖𝛼𝑖 ( 1
𝑑𝛼𝐿(𝐴∗,𝐴𝑖)

)
𝑘

∑ ( 1
𝑑𝛼𝐿(𝐴∗,𝐴𝑖)

)
𝑘

𝑖

,            (2.1) 

 𝑠𝑢𝑝 𝐵𝛼
∗ =

∑ 𝑠𝑢𝑝𝐵𝑖𝛼𝑖 ( 1
𝑑𝛼𝑈(𝐴∗,𝐴𝑖)

)
𝑘

∑ ( 1
𝑑𝛼𝑈(𝐴∗,𝐴𝑖)

)
𝑘

𝑖

,            (2.2) 

 

with 𝐴𝑖 being the 𝑖th antecedent, 𝐴∗ the measured value, 𝑘 is the number of antecedents, and 

𝑑𝛼𝐿/𝑈 represent the euclidean distances between the lower and upper bounds of the distance 

between the 𝛼-cuts of observation and the antecedents, and 𝐵∗stands for the corresponding 

fuzzy conclusion. 

In the following sections, I show in detail my main contributions to the development of 

the fuzzy inference strategy. First, I begin by explaining why a uniform classification scheme 

is used and clarifying the antecedents derivation process. Then, I propose two rulebase genera-

tion methods, and I compare their results with the original method. Finally, I study the influence 

of introducing more consequent classes on the classification performance, and also, I discuss 

the practical results.  

 

2.1.4 Evaluation metrics 

For the evaluation purposes, we assessed the tiles in the test set and compared their inferred 

polyp content with the corresponding image ground truth masks, which had been manually 

drawn by the professional personnel. The true positive rate (TPR), the false positive rate (FPR), 

the true negative rate (TNR) and the false negative rate (FNR) were basically utilized in the 

process of evaluating the classification results of the three rulebase generation methods. These 

parameters are mathematically expressed below. 

1. True Positive Rate (TPR): TPR, also known as sensitivity or recall, is the proportion of 

true positives (correctly classified positive cases) among all actual positive cases. It is calcu-

lated as the ratio of true positives to the sum of true positives and false negatives. 
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 𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
.            (2.3) 

2. False Positive Rate (FPR): FPR is the proportion of false positives (incorrectly classi-

fied positive cases) among all actual negative cases. It is calculated as the ratio of false positives 

to the sum of false positives and true negatives. 

 𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
.            (2.4) 

3. True Negative Rate (TNR): TNR, also known as specificity, is the proportion of true 

negatives (correctly classified negative cases) among all actual negative cases. It is calculated 

as the ratio of true negatives to the sum of true negatives and false positives. 

 𝑇𝑁𝑅 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
.            (2.5) 

4. False Negative Rate (FNR): FNR is the proportion of false negatives (incorrectly clas-

sified negative cases) among all actual positive cases. It is calculated as the ratio of false nega-

tives to the sum of false negatives and true positives. 

 𝐹𝑁𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
.            (2.6) 

Also, besides TPR, TNR, FPR and FNR, more evaluation metrics were introduced to 

make the evaluation process more comprehensive in the advanced stages of this chapter. The 

Accuracy (ACC), Matthews Correlation Coefficient (MCC), and the F1 score were used, they 

are defined the following way: 

 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.            (2.7) 

 𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
.            (2.8) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃 

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
.            (2.9) 

2.2 Application of fuzzy rule interpolation in colorectal polyp detection 

2.2.1 Introducing the uniform classification scheme  

Continuing the development of the fuzzy inference-based approach that was proposed by the 

research team at our university is one of the primary goals of this chapter. The approach objec-
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tive is not to achieve perfect polyp segmentation within colonoscopy images, but rather to high-

light image segments that potentially contain polyps and draw the attention of medical person-

nel to detect and classify colorectal polyps more efficiently. 

The colonoscopy databases have various types of polyps, and these polyps have been 

captured from different angles and viewpoints. Moreover, there are difficulties arising from 

variations in the bowel cleansing, these are other challenges to consider. To address these is-

sues, a grouping process to organize the images within the databases into distinct image groups 

was employed. Each group consisted of subsequent images taken from the same examination 

with relatively similar angles of the polyps and similar properties, i.e., color, contrast, focus, 

and cleanliness state. 

The three databases CVC-Clinic (Bernal J. , et al., 2015), CVC-Colon (Bernal, Sanchez, 

& Vilariño, 2012), and Etis-Larib (Silva, Histace, Romain, Dray, & Granado, 2014) were orga-

nized in 81 image groups. The images were divided into smaller tiles of different sizes based 

on their original size: 30 × 30, 40 × 40, 50 × 50, 60 × 60 , and 70 × 70 for small images; 

60 × 60, 80 × 80, 100 × 100, 120 × 120, and 140 × 140 for medium images; and 120 ×

120, 160 × 160, 200 × 200, 240 × 240, and 280 × 280 for large images. As the size of the 

tiles did not influence the results in a consequent way, and the middle one was the best for 

almost all cases, the size series 50 × 50, 100 × 100, 200 × 200 were used in most of the stud-

ies, and I followed this approach as well. 

A training set was constructed from every second tile, while the remaining half of the tiles 

was used to test the derived rulebases. 

A very simple statistical approach was used in the first  attempts of generating the training 

set fuzzy rules of the two outputs “contains polyp”, and “does not contain polyp”. The mean of 

the measured data was selected as the 𝛼 = 1 cut point of the triangular rule, while the support 

was generated from the minimum and maximum measured values of the empirical measured 

data from the training set’s part corresponding to the respective consequent. 

The results for the 81 image groups with the 81 different rulebases are presented in Figure 

2-3. Also, the results of a joint, single rulebase based on the statistical data of the training set 

consisting of the training sets of all the image groups can be seen. It is visible that in most of 

the cases the fuzzy inferences with rulebases of separate image groups outperform that of the 

joint rulebase, not only for the group the rules were generated from, but also for most of the 

other groups. However, in this research, as it is more realistic to apply the uniform rulebase, 

only the performance of classification of the joint rulebase was studied. Developing a uniform 
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classification scheme is motivated by the need for very rapid and simple algorithms in the live 

video image classification applications. 

 

 

 

 

 

Figure 2-3 True positive rates and false positive rates of the stabilized Kóczy-Hirota fuzzy 

rule interpolation-based colonoscopy image classification. First column: the results for all 

the 81 image groups, of which the first 18 belongs to CVC-Colon (Bernal, Sanchez, & 

Vilariño, 2012), the next 36 belongs to CVC-Clinic (Bernal J. , et al., 2015), and the last 36 

belongs to ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014). The different colors 

mean rulebases based on training sets from different image groups. Second column: the re-

sults for a joint, common rulebase. The magenta larger triangles of the second column are 

also visible in the graphs of the first column, for comparison 

 

2.2.2 Derivation of the antecedents  

The selection of the antecedents for the fuzzy classification system must be done very carefully, 

considering the complex spatial, biological, and optical conditions present during colonoscopy. 

Moreover, for the algorithm to be suitable for live video investigation, it is necessary to have 

computationally simple antecedents. Also, considering that medical experts and some patients 
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prefer to comprehend the functionality of a program on their device, it is recommended to use 

easily understandable input parameters. 

The endoscopic camera operates in a dark, wet, and mucous environment, illuminated by 

multiple point-like light sources, resulting in pictures with significant reflections. Thus, as the 

polyps are protruding into the bowel, even if their native color is the same as the bowel wall, 

their color representation is different due to lighting. Moreover, the natural pink color of the 

bowel wall restricts the color range of the images, except in cases where the bowel is inade-

quately cleansed, or a malignant lesion is present. 

The colonoscopy images were sorted into three categories based on the polyp angle of 

view, namely zenithal, lateral, and semilateral (Bernal J. , et al., 2015). The zenithal view pre-

sents the polyps from a top perspective, where they appear not significantly brighter than the 

surrounding area. However, their circumference and surface texture are usually distinguishable. 

Whereas the polyps viewed from a lateral angle have a much darker background with a low - 

light conditions bowel wall. And lastly, there is an in-between view, the semilateral view, where 

the background is somewhat darker than the polyp, and the contour, particularly at the polyp's 

bottom, is barely detectable. 

Considering the characteristics of polyps mentioned above, the simplest statistical param-

eters: mean and standard deviation were proposed to be studied, together with the mean and 

standard deviation of the gradient-filtered image, since the gradients surrounding the polyp-

blobs can be relatively large. 

When the edges in an image are prominent and clearly defined, they can be valuable in 

determining the location of a polyp (Maini & Aggarwal, 2009). This was the reason for calcu-

lating the edge-to-pixel ratio using the Canny edge detection filter as another simple antecedent 

as well. Edges in a colonoscopy image segment may arise due to the polyp contours, polyps' 

texture or the micro-architecture of epithelial pits, and the presence of veins or folds in the 

bowel wall. In cases where a segment contains a lot of edges, the density of edges within that 

segment will be high. Conversely, smoother image segments tend to have lower edge density 

values. 

The other set of antecedents is relatively unique, it is based on the Rényi entropies (Rényi, 

1960) of the image  
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 𝑆𝑛 =
1

1−𝑛
𝑙𝑛(∑ 𝐼𝑖

𝑛𝑁
𝑖=1 ),            (2.10) 

which is a generalization of the well-known Shannon entropy 𝑆1 (Shannon, 1948). Here 𝐼𝑖 de-

notes the 𝑖th pixel intensity normalized to be a probability distribution component. The struc-

tural entropy 𝑆𝑠𝑡𝑟 and the spatial filling factor 𝑙𝑛 𝑞 of the normalized pixel intensities were also 

calculated, and they are given by the following formulas 

 𝑆𝑠𝑡𝑟   = 𝑆1 − 𝑆2,              (2.11) 

 𝑙𝑛 𝑞 = 𝑆0 − 𝑆2.           (2.12) 

These quantities are proven to give information about the shape of the distribution (Pipek & 

Varga, 1992), (Varga & Pipek, 2003), and they are effective in characterizing surfaces (Molnár, 

Nagy, & Mojzes, 2009), (Bonyár, Molnár, & Harsányi, 2012), (Bonyár, 2016). It is also shown 

that structural entropy is different along a polyp-like object than in the case of the probable 

background patterns in bowels (Nagy, Sziová, & Pipek, 2019). 

The powerful widely used tool for filtering noise, capturing fine details, analyzing rough 

scale behavior, and detecting various patterns is Wavelet transform (Nagy, Sziova, & Koczy, 

2017). Wavelet transform results in a set of coefficients that represent the image at different 

scales and orientations. The low-frequency coefficients correspond to the coarse details of the 

image, while the high-frequency coefficients capture the fine details and edges. Since there are 

rapid changes around the polyps, the fine-scale components were expected to have relatively 

greater significance in the regions surrounding the polyps. Due to this observation, the same 

parameters were calculated for the wavelet transform four output types (the low-pass– low-

pass, the two mixed and the high-pass–high-pass) as for the original images themselves. 

Using the RGB color space a total of 99 input parameters which include the measurable 

quantities mentioned earlier were calculated. Table 2-1 contains an ordered list of these input 

parameters, which were used as an initial set of antecedents for the fuzzy rulebase. 

 

2.2.3 Median-centered and histogram-fitted rulebase generation methods 

In the first  attempts of generating the fuzzy rules of the two outputs for the training set using 

the mean of the measured data, the support of the resulting rules of the tiles with polyp was 

very often included into the support of the non-polyp rules, and the 𝛼 = 1  points were often 

also near, thus plotting the histograms of the measured antecedents was introduced to analyze 

the shape of the probability distributions in the complete training set. Lot of the histograms  
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Table 2-1 The numbering of the antecedent parameters. R,G, and B means the color channel, 

𝑆𝑠𝑡𝑟 is the structural entropy, 𝑙𝑛 𝑞 is the logarithm of the spatial filling factor from (Pipek & 

Varga, 1992). In the case of the wavelet transforms, LL stands for the Low-pass Low-pass fil-

ter branch output, i.e., the rough details, HH for the output of the High-pass High-pass 

branch, i.e., the fine details, while the LH and HL combinations denote the mixed outputs, i.e., 

if one of the directions is filtered with Low-pass, the other with High-pass filter 

 

Antecedent Index Antecedent Type 

1–2 

3–4 

5–6 

7 

8 

9 

10–11 

12–13                         

14–15 

mean and standard deviation, R 

mean and standard deviation, G 

mean and standard deviation, B 

edge density, R 

edge density, G 

edge density, B 

𝑆𝑠𝑡𝑟, ln𝑞, R 

𝑆𝑠𝑡𝑟, ln𝑞, G 

𝑆𝑠𝑡𝑟, ln𝑞, B 

16–30 

31–45 

46–60                         

61–75 

similar to 1–15, wavelet transform LL 

similar to 1–15, wavelet transform LH 

similar to 1–15, wavelet transform HL 

similar to 1–15, wavelet transform HH 

76–77 

78–79 

80–81 

82–87 

88–93 

94–99 

gradient magnitude’s mean and standard deviation, R 

gradient magnitude’s mean and standard deviation, G 

gradient magnitude’s mean and standard deviation, B 

similar to 76–81, gradient direction 

similar to 76–81, gradient 𝑥 component 

similar to 76–81, gradient 𝑦 component 

 

seem very different from the shape of the applied mean fuzzy rules as it can be seen in Figure 

2-4. In the next three sections, I give a brief characterization of the histograms, based on Fig-

ure 2-4. 

The histograms of the mean values of the original tile have two wide peaks apart from 

each other for the two consequents (see No. 1, 3 and 5), while the standard deviations have 

almost the same peak location (see No. 2), with one of the peaks being visibly broader. The 

edge densities of the original form two almost overlapping wide heaps (see No. 8), while the 
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structural entropy and the filling factor have only slightly different thin peaks at the sides of the 

interval, sometimes with more smaller peaks (see No. 10, 11 and 12), (this again suggests build-

ing a hierarchical classification scheme where these entropy-based quantities play role only in 

some cases, even though a hierarchical classification scheme would make the calculations more 

complicated and time demanding). 

The wavelet analysis changes the histograms of the mean values to thinner and more dis-

tinguishable peaks (see No. 1, compared to 31 and 61), the standard deviations to slightly thin-

ner, too (see No. 2, compared to 32 or 21 and 51) and the edge densities to more distinguishable 

(see No. 22, 23, 38, and 52). The structural entropy and the filling factor also become even 

thinner (see No. 40 and 44).  

The gradients’ mean values usually differ only slightly in either width or peak location 

(see No. 90), while their standard deviations have peaks at the lower values which can be lo-

cated at almost the same, or slightly different positions (see No. 87 and 91).  

As the shape of the probability distributions in the training sets differ from the applied 

fuzzy rules very much, the goal became to determine whether selecting fuzzy membership func-

tions fitting more to the measured data improves the classification properties. Two approaches 

were used. First, instead of having the 𝛼 = 1 point to the mean of the measured values, it was 

moved to the median, which improves the fitting only slightly, as it can be seen with the dotted 

lines in Figure 2-4. This approach will be referred to as “median-centered” one in the following 

discussions. Second, to achieve better fitting the 𝛼 = 1 peak of the triangular membership func-

tion was set to the maximum of the histogram, while the infimum and supremum of the support 

were set to those points, where the histogram values first cross a given percentage of its peak 

value, starting from both sides of the interval [0; 1]. In some cases, this also resulted in bad 

fitting (see antecedent No. 52 in Figure 2-4) but mostly this fits the histograms rather well. Later 

this method will be called “histogram-fitted” rule generation. This is the method which pro-

duces highly sparse rules (i.e., containing gaps), especially when the support threshold is set to 

higher levels, causing the support of the histogram-based rules to become narrower, like the 

10% case shown in Figure 2-4. This was the reason why the need for rule interpolation arose, 

and the application of one of the interpolation methods, such as the SKH approach, was neces-

sary. 
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Figure 2-4 Examples of the RGB color space histograms together with the triangular rules 

resulting from the three rulebase generation methods of the measured data in the training sets 

for the three databases. Red color means the consequent “with polyp”, green color means the 

consequent “no polyp” cases. The histogram points are denoted by red stars for the “with 

polyp” cases, and greed circles for the “no polyp” cases. Continuous line denotes the 

original rules with the mean value being the 𝛼 = 1  peak of the triangular rule, dotted line the 

median-centered ones, and dashed line the histogram-based rules with the center being the 

peak of the histogram and the support set to the location where the histogram first meets the 

threshold level 10%. All the measured data are normalized so that the training set would be 

located into the closed interval [0; 1], while the histogram peaks were scaled to be 1, for 

better visibility 
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Figure 2-4 (continued): Examples of the RGB color space histograms together with the 

triangular rules resulting from the three rulebase generation methods of the measured data in 

the training sets for the three databases. Red color means the consequent “with polyp”, green 

color means the consequent “no polyp” cases. The histogram points are denoted by red stars 

for the “with polyp” cases, and greed circles for the “no polyp” cases. Continuous line de-

notes the original rules with the mean value being the 𝛼 = 1  peak of the triangular rule, dot-

ted line the median-centered ones, and dashed line the histogram-based rules with the center 

being the peak of the histogram and the support set to the location where the histogram first 

meets the threshold level 10%. All the measured data are normalized so that the training set 

would be located into the closed interval [0; 1],, while the histogram peaks were scaled to be 

1, for better visibility 

 

 

 

 

 



R. Ismail  Detection, localization, and segmentation of colorectal polyps 

in colonoscopy images by computational intelligence methods 

22 

2.2.4 Experimental study and analysis 

In the first reference case, all the 99 antecedents from Table 2-1 for RGB colour space were 

used. The performance of the “median-centered” and “histogram-fitted” rule generation meth-

ods was compared to the original “mean-centered” method by the following two directions, 

how the selection of the threshold for the histogram fitting, and the selection of the antecedents 

influence the classification results? 

Later, however, during the experiments three representative threshold levels 

{1%, 5%, and 10%}, and three representative number of antecedents {66, 50, and 33} were se-

lected for further study. 

The antecedents' selection was made in a way where the histograms, and thus the resulting 

rules had the maximum dissimilarity. The reason for decreasing the number of the antecedents 

was to give the priority to the antecedents that had more different membership functions for the 

two consequents. The antecedents were sorted according to the total sum of difference in the 

magnitudes of the three characteristic points of the triangular membership functions for the two 

consequents. The larger the sum of magnitude differences was, the better the rule for classifi-

cation was considered. For each type of the three rulebase generation methods, the 66, 50 and 

33 antecedents with the largest differences were used in the classification, respectively.  

The classification results of the three rulebase generation methods using the basic evalu-

ation metrics are numerically quantified in Table 2-2. 

In the 99 antecedents case, the positioning of the 𝛼 = 1 point of the triangular member-

ship function to the median of the measured data improves the performance slightly for the “yes 

polyp” case (TPR increased) but makes more tiles without polyp segment be detected as polyp 

containing one (FPR increased). However, moving the membership functions to histogram 

based central points and supports does not improve the results, even though the true positive 

rate improves significantly, the true negative rate drops to below 50%. (For these histogram-

fitted results, if all the antecedents were taken into consideration, then such rules were also 

included, where the support of the membership functions totally overlapped, thus only the core 

points of the rules determined the results in the SKH rule interpolation. This is the reason why 

the last 3 lines are the same. This statement holds for all the cases if the used antecedents are 

the same, the outputs will be the same for all histogram percentages.) 

If we study the effect of leaving out the antecedents with the most overlapping member-

ship functions, then, it is clear, that the histogram-fitted rulebases are not much influenced. For  
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Table 2-2 Classification performance for the different methods with different number of 

selected antecedents 

Method TPR TNR FPR FNR 

 Number of antecedents: 99 

Mean-centered 0.6001 0.6698 0.3302 0.3999 

Median-centered 0.6894 0.593 0.407 0.3106 

Histogram-fitted 1% 0.8273 0.4371 0.5629 0.1727 

Histogram-fitted 5% 0.8273 0.4371 0.5629 0.1727 

Histogram-fitted 10% 0.8273 0.4371 0.5629 0.1727 

 Number of antecedents: 66 

Mean-centered 0.6584 0.6257 0.3743 0.3416 

Median-centered 0.683 0.6068 0.3932 0.317 

Histogram-fitted 1% 0.8286 0.4325 0.5675 0.1714 

Histogram-fitted 5% 0.8281 0.4352 0.5648 0.1719 

Histogram-fitted 10% 0.8271 0.4366 0.5634 0.1729 

 Number of antecedents: 50 

Mean-centered 0.6712 0.6193 0.3807 0.3288 

Median-centered 0.6736 0.6093 0.3907 0.3264 

Histogram-fitted 1% 0.8091 0.4559 0.5441 0.1909 

Histogram-fitted 5% 0.7895 0.482 0.518 0.2105 

Histogram-fitted 10% 0.7814 0.4912 0.5088 0.2186 

 Number of antecedents: 33 

Mean-centered 0.7651 0.3989 0.6011 0.2349 

Median-centered 0.5607 0.6771 0.3229 0.4393 

Histogram-fitted 1% 0.7828 0.4905 0.5095 0.2172 

Histogram-fitted 5% 0.7895 0.48 0.52 0.2105 

Histogram-fitted 10% 0.7779 0.4922 0.5078 0.2221 

 

 

the mean-centered rules, the true positive rates improve, however, the true negative rates dete-

riorate. For the median- centered rules the tendency is the opposite, but none of these tendencies 

are very expressed. It is interesting to mention, that in the case of 33-antecedents, for the mean- 

centered case the true negative rate became extremely low, while for the median-centered case 

it increased, but there the true positive rate drops significantly compared to the other numbers 

of antecedents. 

If the tendency between the histogram percentages that determine the support of the rules 

is studied, I can conclude the following. The 1% case gives the best results, and as the number 

of highly overlapping rules that are excluded increases, this tendency becomes clearer. 
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2.3 The influence of introducing more consequent classes on the classification 

performance 

The influence of selecting the rulebase parameters on improving the effectiveness of the clas-

sification system based on stabilized Kóczy-Hirota rule interpolation method was investigated 

in the previous study (Sziová, Ismail, Lilik, Kóczy, & Nagy, 2020). This work was extended 

by authors in (Sziova, Nagy, & Fazekas, 2021) to a more thorough antecedents selection ap-

proach. 

Moreover, as it was found in the first histograms analysis (Sziová, Ismail, Lilik, Kóczy, 

& Nagy, 2020) that many of the antecedents had histograms with multiple local maxima, this 

research was extended to check if these multiple peaks belong to image segments with different 

polyp percentages: the image segments that contain only a small portion of a polyp might be-

have differently from those that are almost entirely covered with a polyp part. 

The point, which was thought to be interesting to study, is the possibility of including 

more consequents between “containing polyp” and “not containing polyp” classes to better 

match real-life problems. The number of consequents was increased from 2 - contains polyp or 

does not contain polyp - to more output classes based on the polyp percentages of the image 

segments. The basic idea is to allow the tiles with different polyp coverage to form different, 

more structured classes, instead of the bulk “no polyp” and “yes polyp” ones, as the polyps 

behave differently along their perimeters and inside, even if only protruding, roundish polyps 

were studied. 

Regarding the newly tested output classes, first the consequent classes as “low polyp per-

centage” and “high polyp percentage” were introduced instead of the “yes polyp” class, with a 

borderline at 50% polyp coverage. Then, an even more refined, 4-step system was studied, with 

thresholds at 20% and 50% polyp percentages. The no polyp class was kept intact (Ismail, 

Sziova, Taha, & Nagy, 2022). 

 

2.3.1 Experimental results 

Analyzing the colonoscopy images in the HSV color space, which separates color components 

from intensity, may offer additional valuable information, and the switching from RGB to HSV 

color space has also been proven to have a positive effect on the results in (Sziova, Nagy, & 

Fazekas, 2021). That was the reason why in this study, the same 99 antecedents were also used 
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as an initial set of antecedents for the fuzzy rulebase, but they were also calculated in the HSV 

color space as well. 

Together with the initial 99-antecedents case and using the antecedent selection process 

similar to the one followed with the study of the rulebase parameters, the influence of introduc-

ing more consequent classes on the classification performance was studied using the 66, 50, 

and 33 most distinguishable antecedents. 

Besides TPR, TNR, FPR and FNR, the Accuracy (ACC), Matthews Correlation Coeffi-

cient (MCC), and the F1 score were used to determine whether the introduction of the new 

output classes and the new color space improve the results. As these metrics are valid for binary 

classification tasks, and our requirement is also a binary classification, I merged the 3 and 4 

output classes into binary decision the following way. Both for 3 and for 4 classes, the class 

with 0% polyp content remained the non-polyp output, and all the other categories were built 

into the “with polyp” case. 

The resulting histograms and the mean-, median-centered, and histogram-fitted 1% trian-

gular rules for the 2, 3, and 4 consequent classes of all 99 antecedents for RGB and HSV color 

spaces are plotted in Appendix A and Appendix B, respectively.  Tables 2-3, 2-4, and 2-5 list 

the numerical results for all evaluation metrics. 

The true positive rates improved by introducing the 3 and 4 consequent classes, however, 

the true negative rates became worse, both for the RGB and the HSV colour spaces. In some 

cases, especially for the histogram-based rulebases, the improvement of the true positive rate 

stops at the 3-class case. 

For accuracy, the original, 2-class case is almost always the best. However, based on 

MCC and F1 score, the tendency is not clear, sometimes the 3-class, sometimes the 2-class case 

is the best, and there are some cases with the 4-outputs giving the best results. Generally, the 4-

class case did not improve the results, while the 3-class and 2-class cases were comparable.  

 The F1 score emphasizes the ability to find the polyp cases, but it can be degraded by a 

very large false positive rate, if the number of the negative samples is much higher than the 

number of positive samples (i.e., the dataset is imbalanced), like in this case. This is the reason 

why F1 is below 0.5, even if the TPR is over 0.9.  
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Table 2-3 Classification performance for different number of selected antecedents with differ-

ent consequent classes using mean-centered rulebase generation method for RGB and HSV 

color spaces 

 

Consequent 

classes 

TPR TNR FPR FNR ACC MCC F1 

 Number of antecedents: 99 RGB 

2 output classes 0.6001 0.6698 0.3302 0.3999 0.65391 0.23216 0.44203 

3 output classes 0.6561 0.623 0.377 0.3439 0.63052 0.23594 0.44786 

4 output classes 0.7075 0.5741 0.4259 0.2925 0.60456 0.23647 0.44973 

 Number of antecedents: 66 RGB 

2 output classes 0.6584 0.6257 0.3743 0.3416 0.63318 0.24034 0.45056 

3 output classes 0.6819 0.6085 0.3915 0.3181 0.62529 0.24474 0.45394 

4 output classes 0.6726 0.5883 0.4117 0.3274 0.60754 0.21938 0.43909 

 Number of antecedents: 50 RGB 

2 output classes 0.6712 0.6193 0.3807 0.3288 0.63116 0.24529 0.45396 

3 output classes 0.5154 0.6926 0.3074 0.4846 0.6521 0.18243 0.40358 

4 output classes 0.8576 0.2976 0.7024 0.1424 0.4255 0.14811 0.40542 

 Number of antecedents: 33 RGB 

2 output classes 0.7651 0.3989 0.6011 0.2349 0.48256 0.14333 0.40319 

3 output classes 0.7791 0.3809 0.6191 0.2209 0.47185 0.14136 0.40257 

4 output classes 0.8888 0.2128 0.7872 0.1112 0.36723 0.10886 0.39085 

 

Consequent 

classes 

TPR TNR FPR FNR ACC MCC F1 

 Number of antecedents: 99 HSV 

2 output classes 0.7218 0.563 0.437 0.2782 0.59925 0.23913 0.45143 

3 output classes 0.7577 0.5374 0.4626 0.2423 0.58771 0.2482 0.45636 

4 output classes 0.7776 0.5085 0.4915 0.2224 0.56995 0.24178 0.45235 

 Number of antecedents: 66 HSV 

2 output classes 0.7541 0.5618 0.4382 0.2459 0.60571 0.26526 0.46631 

3 output classes 0.7897 0.5316 0.4684 0.2103 0.59052 0.27066 0.46834 

4 output classes 0.8244 0.487 0.513 0.1756 0.56405 0.26519 0.46345 

 Number of antecedents: 50 HSV 

2 output classes 0.7437 0.5638 0.4362 0.2563 0.60492 0.25826 0.46239 

3 output classes 0.7845 0.5292 0.4708 0.2155 0.58754 0.26437 0.4649 

4 output classes 0.8199 0.4869 0.5131 0.1801 0.56298 0.26127 0.46151 

 Number of antecedents: 33 HSV 

2 output classes 0.7659 0.4671 0.5329 0.2341 0.53537 0.19859 0.42958 

3 output classes 0.8403 0.4268 0.5732 0.1597 0.52124 0.23283 0.44499 

4 output classes 0.8797 0.3268 0.6732 0.1203 0.45308 0.19316 0.42355 



R. Ismail  Detection, localization, and segmentation of colorectal polyps 

in colonoscopy images by computational intelligence methods 

27 

 

Table 2-4 Classification performance for different number of selected antecedents with differ-

ent consequent classes using median-centered rulebase generation method for RGB and HSV 

color spaces 

 

Consequent 

classes 

TPR TNR FPR FNR ACC MCC F1 

 Number of antecedents: 99 RGB 

2 output classes 0.6894 0.593 0.407 0.3106 0.61498 0.23744 0.44996 

3 output classes 0.723 0.559 0.441 0.277 0.59619 0.23649 0.4499 

4 output classes 0.762 0.512 0.488 0.238 0.56939 0.23161 0.44704 

 Number of antecedents: 66 RGB 

2 output classes 0.683 0.6068 0.3932 0.317 0.62419 0.24411 0.45365 

3 output classes 0.709 0.571 0.429 0.291 0.60254 0.23527 0.44907 

4 output classes 0.725 0.538 0.462 0.275 0.58063 0.22077 0.44115 

 Number of antecedents: 50 RGB 

2 output classes 0.6736 0.6093 0.3907 0.3264 0.62402 0.23855 0.45012 

3 output classes 0.698 0.556 0.444 0.302 0.58832 0.21309 0.43643 

4 output classes 0.787 0.312 0.688 0.213 0.42044 0.0914 0.38274 

 Number of antecedents: 33 RGB 

2 output classes 0.5607 0.6771 0.3229 0.4393 0.65054 0.20604 0.42301 

3 output classes 0.732 0.328 0.672 0.268 0.42044 0.05435 0.36582 

4 output classes 0.97 0.059 0.941 0.03 0.267 0.05448 0.37674 

 

Consequent 

classes 

TPR TNR FPR FNR ACC MCC F1 

 Number of antecedents: 99 HSV 

2 output classes 0.5824 0.6547 0.3453 0.4176 0.63818 0.20323 0.42377 

3 output classes 0.6325 0.6283 0.3717 0.3675 0.62928 0.22108 0.43799 

4 output classes 0.6426 0.6005 0.3995 0.3574 0.61012 0.20492 0.4295 

 Number of antecedents: 66 HSV 

2 output classes 0.5794 0.6617 0.3383 0.4206 0.6429 0.20723 0.42573 

3 output classes 0.6502 0.6282 0.3718 0.3498 0.63322 0.2357 0.44744 

4 output classes 0.6792 0.5764 0.4236 0.3208 0.5999 0.21477 0.43676 

 Number of antecedents: 50 HSV 

2 output classes 0.5912 0.6672 0.3328 0.4088 0.64987 0.22229 0.43551 

3 output classes 0.6566 0.6209 0.3791 0.3434 0.62906 0.23454 0.44707 

4 output classes 0.7508 0.5319 0.4681 0.2492 0.58186 0.23783 0.45061 

 Number of antecedents: 33 HSV 

2 output classes 0.6429 0.6376 0.3624 0.3571 0.6388 0.23809 0.44849 

3 output classes 0.6999 0.5774 0.4226 0.3001 0.60535 0.23287 0.44754 

4 output classes 0.9734 0.0529 0.9471 0.0266 0.26318 0.05235 0.37636 
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Table 2-5 Classification performance for different number of selected antecedents with differ-

ent consequent classes using histogram-fitted 1% rulebase generation method for RGB and 

HSV color spaces 

 

Consequent 

classes 

TPR TNR FPR FNR ACC MCC F1 

 Number of antecedents: 99 RGB 

2 output classes 0.8273 0.4371 0.5629 0.1727 0.52627 0.22914 0.4438 

3 output classes 0.8895 0.3307 0.6693 0.1105 0.45837 0.20586 0.42864 

4 output classes 0.8512 0.37 0.63 0.1488 0.47989 0.19911 0.42777 

 Number of antecedents: 66 RGB 

2 output classes 0.8286 0.4325 0.5675 0.1714 0.52295 0.22664 0.44245 

3 output classes 0.88 0.3517 0.6483 0.12 0.47236 0.21246 0.4324 

4 output classes 0.8637 0.3523 0.6477 0.1363 0.4691 0.19733 0.42633 

 Number of antecedents: 50 RGB 

2 output classes 0.8091 0.4559 0.5441 0.1909 0.5366 0.2276 0.44376 

3 output classes 0.9018 0.3211 0.6789 0.0982 0.4537 0.21073 0.4299 

4 output classes 0.8701 0.3309 0.6691 0.1299 0.45404 0.18692 0.4213 

 Number of antecedents: 33 RGB 

2 output classes 0.7828 0.4905 0.5095 0.2172 0.55728 0.23192 0.44686 

3 output classes 0.9151 0.2911 0.7089 0.0849 0.43359 0.20154 0.42463 

4 output classes 0.9109 0.2931 0.7069 0.0891 0.43421 0.19875 0.42378 

 

Consequent 

classes 

TPR TNR FPR FNR ACC MCC F1 

 Number of antecedents: 99 HSV 

2 output classes 0.9567 0.1987 0.8013 0.0433 0.37187 0.17658 0.41034 

3 output classes 0.9678 0.1812 0.8188 0.0322 0.36088 0.17656 0.40888 

4 output classes 0.9648 0.1664 0.8336 0.0352 0.34875 0.16048 0.4036 

 Number of antecedents: 66 HSV 

2 output classes 0.9538 0.2024 0.7976 0.0462 0.37407 0.17592 0.41044 

3 output classes 0.9663 0.1848 0.8152 0.0337 0.3633 0.17751 0.40942 

4 output classes 0.9651 0.1632 0.8368 0.0349 0.34633 0.1581 0.40277 

 Number of antecedents: 50 HSV 

2 output classes 0.9535 0.2025 0.7975 0.0465 0.37407 0.17568 0.41037 

3 output classes 0.9665 0.185 0.815 0.0335 0.36347 0.17794 0.40955 

4 output classes 0.9636 0.1717 0.8283 0.0364 0.35257 0.16329 0.40471 

 Number of antecedents: 33 HSV 

2 output classes 0.9575 0.1976 0.8024 0.0425 0.3712 0.17661 0.41026 

3 output classes 0.9641 0.1931 0.8069 0.0359 0.3692 0.18129 0.41112 

4 output classes 0.9658 0.1629 0.8371 0.0342 0.34627 0.15885 0.40294 
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Both accuracy and the MCC metrics reflect the method’s general ability to evaluate the 

results. The neutral point, where the random guessing is located in the scales of these metrics 

is 0.5 for accuracy (with the scale of [0,1]), and 0 for MCC (with a scale [−1,1]). The fuzzy 

classification method is clearly better than this neutral point in the case of mean- and median-

centered rulebases, except for the histogram-based method for HSV images. For mean and me-

dian most of the accuracies are above 0.6, and the best accuracies are 0.65: they are for the RGB 

color space, for the original, mean-centered, 99-antecedent, 2-class, and 50-antecedetns, 3-class 

cases results and the median-centered, 33-antecedent, 2-class case. However, for these cases, 

the true positive rates are some of the lowest. 

For MCC the best results can be achieved in the HSV color space, mean-centered case, 

for 66-antecedents, but the 50-antecedent case closely follows. In these cases, the number of 

output classes do not make great impact on MCC or F1, however, the 3-class cases are the best. 

From the rulebase generation methods point of view, clearly, the histogram-based one 

seems to be the least successful for these number of antecedents. The other two methods do not 

differ significantly.  

Regarding the number of antecedents, there is no clear tendency. The TPR for the mean-

centered rulebase generation method and 2-outputs improves as the number of the deleted an-

tecedents increases (and also the TNR decreases), while for the median-centered method, the 

tendency is the opposite, for the RGB case. The other metrics have a kind of optimum for the 

66- and 50- antecedent cases, especially for 3 output classes.  

This implies that there is a tradeoff, not only for the true positive and true negative rates, 

but the other metrics as well, there is no clear optimum within the studied range of parameters 

and further research is needed. 

2.4 Thesis statements  

2.4.1 Thesis 1 

I suggested two novel rulebase generation methods for the application of fuzzy inference with 

stabilized Kóczy-Hirota rule interpolation in colorectal polyp detection, a median-centered and 

a histogram-fitted method. Both methods depend on the statistics of the training set. The 

median-centered method connects the characteristic points of a triangular membership function, 

i.e., the edges of its support and the core point to the minimum, maximum and median of the 

distribution of the training set, respectively. The histogram-fitted method generates triangular 
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rules where the core of the fuzzy membership function is the highest point of the 100-bin, equal-

width histograms of the normalized measured data of each antecedent and each consequent in 

the training set. The support edges extend to the domain where the histogram values first cross 

a given percentage (1%, 5%, or 10%) of its peak value, starting from both sides of the interval 

[0;1]. 

A. I compared the results of the two proposed rulebase generation methods to the original, 

mean-centered method. For three publicly available databases, I calculated the true 

positive rate, the false positive rate, the true negative rate and the false negative rate for 

antecedent numbers being 2/3, 1/2, and 1/3 of the original 99 antecedents. I concluded, 

that the results of the three methods are comparable to each other for the studied 

numbers of antecedents . 

B. Among the histogram-fitted rulebases, the lowest percentage one, with the widest 

support gave the best results . 

 

2.4.2 Thesis 2 

Based on the multiple peaks visible on the 100-bin, equal-width histograms of the distributions 

of the normalized measured data for many antecedents, I proposed to increase the number of 

consequents during the fuzzy decision process to improve the binary “with polyp”-“no polyp” 

classification of tiles of colonoscopy images. Instead of polyp area percentage of 0% or above 

0% classes, I studied a 3-output class case with borderlines at 0% and 50%, and a 4-output class 

case with borderlines at 0%, 20%, and 50%. 

A. The true positive rates are the best for the histogram-fitted rules with HSV version of 

the images. However, in these cases, the true negative rates became very low. These 

results are not much influenced by the number of antecedents used and the number of 

consequent classes . 

B. The accuracy is the best in the case of the original 99-antecedents, 2-consequents, mean-

centered case for RGB versions of the images . 

C. The Matthews Correlation Coefficient (MCC), as well as the F1 score are the best in the 

case of HSV version of the images, 3-consequents, 66-antecedents and mean-centered 

rules. 
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3. Colorectal polyps' localization in colonoscopy images using fuzzy 

circular Hough transform 

3.1 Motivation 

In pattern recognition literature, Hough transform is considered as a great mathematical tool for 

object detection since the first appearance of its classical version for machine analysis of bubble 

chamber pictures by Paul V C Hough in 1959 (Hough, 1959). In 1981, it was extended by D. 

H. Ballard into the Generalized HT (GHT), which is a two-phase learning-detection process to 

detect arbitrary complex non-parametric shapes (Ballard, 1981). Continuously, different 

variations of Hough transform have been proposed by many researchers, like probabilistic 

Hough transform (Nahum, Eldar, & Bruckstein, 1991), randomized Hough transform (Lei & 

Erkki, 1993), and Vector–Gradient Hough Transform (VGHT) (Cucchiara & Filicori, 1998). 

In 1994, Han, Kóczy, and Poston introduced the fuzzy Hough transform (Han, Kóczy, & 

Poston, 1994) to detect fuzzy lines and circles in the noisy environments by roughly fitting the 

data points to given parametric forms. 

Hough transform and all its successive versions have proven to be typical powerful 

techniques with promising outcomes. They were used in numerous fields of applications like 

object detection (Zhao, Han, Zhang, Xu, & Cheng, 2022) and (Lin, 2020), lanes and roads 

detection (Liu, Zhang, Li, & Tao, 2017) and (Mathavan, et al., 2017), industrial automation 

(Pugin, Zhiznyakov, & Zakharov, 2018), mechanical engineering (Nagy, Solecki, Sziová, 

Sarkadi-Nagy, & Kóczy, 2020), robot navigation (Chen, Qiang, Wu, Xu, & Wang, 2021), and 

medical image processing fields (Nagy, Kovács, Sziová, & Kóczy, 2019), (Djekoune, 

Messaoudi, & Amara, 2017), (Hapsari, Utoyo, Rulaningtyas, & Suprajitno, 2020), 

(Vijayarajeswari, Parthasarathy, Vivekanandan, & Basha, 2019), and (Shaaf, Jamil, & Ambar, 

2022). 

Derived from prior experiences and a comprehensive analysis of previous studies 

employing the Hough transform, the practical strengths and weaknesses of this method are 

briefly outlined in Table 3-1. 

The research community has investigated the limitations of Hough transform and 

suggested different approaches to make it a more plausible tool. To solve large calculation 

demand and to ensure integration with the Wireless Capsule Endoscopy (WCE) system, authors  
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Table 3-1 The practical strengths and weaknesses of Hough transform 

Strengths Weaknesses 

✓ Not limited to specific shapes 

 

✓ Any parametric curve can be used 
as basis 

 With more parameters, the 
dimension of the accumulator space 
increases 

 The calculation demand grows 
exponentially with the number of 
parameters 

✓ Easy to parallelize (the 
transformation itself is 
independently executed for each 
edge point) 

 Can be computationally expensive 

- for high-resolution images 

- for complex shapes 

- for dense line images 

✓ Can identify partial and obstructed 
curves 

 Shorter curve segments with fewer 
points result in weaker peaks in the 
accumulator space 

 Sensitive to noise. Noise may lead 
to additional peaks in the 
accumulator space 

✓ It can detect multiple objects 

 Overlapping objects may lead to 
unphysical, ghost peaks 

 Partially covered, or smaller objects 
can be suppressed by the larger 
objects with more points 

 

in (Chuquimia, Pinna, Dray, & Granado, 2020) improved the real-time computation of the 

Hough transform. The design of the new approach took into consideration specific constraints 

of WCE such as limited space and limited energy resources. Within the same limitation 

direction (i.e., minimizing the Hough transform's computational cost), an Edge Orientation-

based Fuzzy Hough Transform (EOFHT) was proposed in (Montseny, Sobrevilla, & Marès 

Martí, 2003). Instead of using all the edge-detected image points in the voting process, just 

those specific points whose representation is consistent with the selected gradient orientation 

range were eligible to vote. 

Moreover, since shorter curves give fewer votes, thus, circles with smaller radii give 

weaker peaks in the accumulator space, a weighted vote which is inversely proportional to the 

radius in the parameter space was given to each entitled point in the image space by the modified 

voting method in (Barbosa & Vieira, 2019). 

The efficiency of applying Hough transform in the field of automatic colorectal polyp 

detection and localization in colonoscopy images was also studied. This is a promising research 
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area and a challenging problem because of the high variability of the colorectal polyps’ 

characteristics in both shape and texture.  

Classical Hough transform was applied in (Silva, Histace, Romain, Dray, & Granado, 

2014) to identify potential regions of interest (ROIs) in 300 video endoscopy pictures. A good 

detection of the ROIs containing a polyp was possible using classical Hough transform based 

on Canny edge detection approach. However, in several samples the method generated many 

alternative weaker circles and raised the classification system’s False Positive Rate (FPR). To 

enhance the effectiveness of the proposed method, after Hough transform step, the textural 

characteristics from co-occurrence matrices were computed, and then used within a boosting-

based technique for the final classification purpose. Hough transform was also used in other 

colorectal polyp localizing methods as a ready-made preprocessing step to find ROIs (Ruano, 

Barrera, Bravo, Gomez, & Romero, 2019), (Ruiz, Guayacán, & Martínez, 2019). However, they 

concentrated on the steps determining whether a ROI contains polyp or not, and not on the 

Hough transform step itself. Linear Hough transform was also used in colonoscopy for detecting 

folds within the bowel (Yao, Stidham, Soroushmehr, Gryak, & Najarian, 2019). 

In my research, rather than improving the steps after selecting the ROIs with the Hough 

transform (as done in previously mentioned studies), an effort was made to overcome certain 

weaknesses of the Hough transform itself.  

As a first step the fuzzy Hough transform was introduced, as it provides more tolerance 

to the deviations from the ideal curve’s points, and colorectal polyps in real colonoscopy images 

are not precisely circular (Nagy, Ismail, Sziová, & Kóczy, 2021). 

As a second step, the large computational demand of the Hough transform was the target, 

as the low computational load is one of the most essential requirements for algorithms used in 

computer-aided diagnosis (CAD) systems (Ismail, Prukner, & Nagy, 2023). 

Hough transform starts with an edge detection (mostly Canny edge detection), and all the 

edge pixels have to be transformed. However, the edge pixels can be decimated, as the Canny 

edge detection tends to have a dense edge map because of the necessarily high connectivity of 

the edge points. Colonoscopy images contain edges other than colorectal polyps’ borderlines, 

however, these edges often either have smaller or larger intensity steps compared to the edges 

of colorectal polyp contours. Based on these considerations, the possibility of removing Canny 

edge detected points with too small or too high gradient magnitude values was investigated in 

(Ismail, Prukner, & Nagy, 2023). 
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The research was performed on all the images of the three colonoscopy image datasets 

CVC-Clinic (Bernal J. , et al., 2015), CVC-Colon (Bernal, Sanchez, & Vilariño, 2012), and 

ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014). The study’s goal was to 

eliminate edge points that do not belong to polyp contours, and at the same time, to keep as 

many polyp contour edge points, as it is necessary for the colorectal polyp contour to be 

detectable. 

Setting a global gradient magnitude threshold domain that could achieve both a low total 

number of Canny edge pixels and at the same time a sufficiently accurate matching with the 

colorectal polyp contour was not possible. However, if the continuity of the Canny edges is 

given up, other edge detecting methods could provide a better basis for Hough transform, as 

there the continuity of the lines is not needed, only that the edge points are on the contours of 

the polyp. This is one of the ideas that were studied further in the following research which is 

presented in detail in this chapter (Ismail & Nagy, 2023). 

The main contributions of this chapter are as follows. First, the performance of four edge 

detection algorithms (Canny, Prewitt, Roberts, and Sobel) was compared, and the most ideal 

one that gave the most polyp-contour-related and least unnecessary edge points was selected. 

Two metrics, based on the normalized gradients of contour and non-contour edges were used 

to determine which algorithm is the most appropriate. Second, to further reduce the number of 

edges that do not belong to the polyp contours, a gradient magnitude thresholding process was 

applied for the results of the selected edge detection method. Finally, to make the circle 

detection more tolerant to shape uncertainty, the fuzzy version of the Hough transform was also 

tested together with the classical one using a gradient-weighted voting approach. To evaluate 

the results, the radial displacement and the average radius were introduced to characterize the 

roundness of the objects to be detected. These contributions are summarized in the following 

points, 

• selecting the edge detection method that is the most suitable for colorectal polyp 

localization purposes. Developing a metric to base this selection, 

• determining gradient limits for removing the unnecessary edges, 

• applying fuzzy Hough transform on colonoscopy images and comparing its results with 

the classical Hough transform, 

• introducing a gradient-weighted voting to both classical and fuzzy Hough transforms 

and study its effects, 

• characterizing the roundness of the objects to be detected. 
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In the following sections, first, I give a theoretical and mathematical summary of the 

classical and fuzzy Hough transforms, the gradient filtering and edge detection algorithms. 

Then, I introduce the practical application of the proposed method steps in detail. Finally, I 

apply the proposed method and evaluate and discuss the results.  

3.2 Theoretical and mathematical background of the implemented techniques 

3.2.1 Classical and fuzzy Hough transforms 

Hough transform has been in use for detecting straight lines and circles since a rather long time. 

The Hough transform is meant to find a parametric curve fitting to some measured points of the 

curve (Hough, 1959), if the shape, i.e., the general parametric formula of the curve is known. 

One of the simplest Hough transforms uses the two-parameter equation of a straight line, i.e., 

 𝑦 = 𝑎0 ∙ 𝑥 + 𝑏0            (3.1) 

with 𝑥 and 𝑦 being the coordinates of points in the Cartesian space, and 𝑎0 and 𝑏0 being the 

parameters from the parameter space (𝑎, 𝑏). Hough transform basically generates the curves 

belonging to each line point (𝑥0, 𝑦0) in the space of the parameters; in the case of straight lines, 

each point (𝑥0, 𝑦0) will form a straight line 

  𝑏 = (−𝑥0) ∙ 𝑎 + 𝑦0           (3.2) 

in the parameter space, too. If another point is on line (3.1) in the real space, it will have another 

line in the transformed space, similar to (3.2), but with different slope and offset. However, 

these lines, formed by the points on line (3.1) will have an intersection at (𝑎0, 𝑏0), i.e., at the 

parameter pair belonging to (3.1). This means, that the point (𝑎0, 𝑏0) will be arising from all 

the points (𝑥, 𝑦) of (3.1), thus, if we add one vote to each point of (3.1), then (𝑎0, 𝑏0) will have 

a high number of votes, whereas other points, that belong only to one of the lines of type (3.2) 

will have only one. This consideration was used by Hough and later by many others to develop 

the following method. 

1. Divide the space (𝑥, 𝑦) by a finite grid (if not already executed). 

2. Divide the transformed space (𝑎, 𝑏) by a finite grid, it gives the resolution of the result. 

3. For each point (𝑎, 𝑏) in the transformed space add a vote for each point (𝑥, 𝑦) in the original 

space, that is contained by the line. 

4. Search for the maximum of votes 

a) If there is just one line, the global maximum (𝑎𝑚𝑎𝑥,0, 𝑏𝑚𝑎𝑥,0) will be the approximation 

of parameter (𝑎0, 𝑏0) of the line we were looking for. 
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b) If there are multiple lines, longer and shorter segments, the local maxima 

(𝑎𝑚𝑎𝑥,𝑘, 𝑏𝑚𝑎𝑥,𝑘) will also approximate parameter pairs of lines. 

The longer the line in the original space, the more votes it obtains. By setting up a 

threshold, the length of the detected line segment can be controlled. 

5. The lines 𝑦 = 𝑎𝑚𝑎𝑥,𝑘 ∙ 𝑥 + 𝑏𝑚𝑎𝑥,𝑘  with the detected approximate parameters 

(𝑎𝑚𝑎𝑥,𝑘, 𝑏𝑚𝑎𝑥,𝑘) can be drawn in the original space (𝑥, 𝑦). 

The algorithm is given for the case of straight lines like (3.1), but it can be generated 

easily to any kind of parametric curve. In the case of colorectal polyps, the circular or elliptic 

Hough transform is the most plausible, with parametric equations 

  𝑟0
2 = (𝑥 − 𝑎0)

2 + (𝑦 − 𝑏0)
2,           (3.3) 

  1 =
(𝑥−ℎ0)

2

𝑎0
2 +

(𝑦−𝑘0)
2

𝑏0
2            (3.4) 

It can be seen that the circle has three parameters, the radius 𝑟0, and the centre coordinates 

𝑎0  and 𝑏0 , while the ellipse has four parameters, the half axes 𝑎0  and 𝑏0 , and the centre 

coordinates ℎ0 and 𝑘0. 

Hough transforms are applied to images after edge detection, thus, the original space 

already has an innate grid, i.e., step 1 is mostly not necessary (Ballard, 1981), (Nahum, Eldar, 

& Bruckstein, 1991), (Lei & Erkki, 1993). Very often this edge detection step is considered as 

the first step of the Hough transform. 

As the focus of our work is on circular Hough transform, here the pseudocode of the 

classical circular Hough transform is given in Algorithm 1. 

In real life, the images have noise, thus, even if the original objects had straight lines, 

circles or ellipses as their edges, the images will probably have distorted edges. If this distortion 

is not too large, then the classical Hough transform is still effective, though sometimes more 

lines arise instead of one. However, there is a method that can handle not only slightly distorted 

edges, but larger deviations from the circles. This method is the fuzzy Hough transform, 

introduced by Han, Kóczy and Poston (Han, Kóczy, & Poston, 1994). 

The fuzzy Hough transform considers the points (𝑥, 𝑦) as fuzzy points. Fuzzy points are 

based on Zadeh’s original idea of fuzzy sets (Zadeh, 1965), which generalized the classical, 

Boolean sets to have fuzzy perimeters by introducing a so-called membership function 𝜇. In the 

classical, Boolean algebra, only the membership values of 𝜇 = 0 and 𝜇 = 1 are possible, i.e., 

something can either be a member of a set or not. In Zadeh’s approach, the objects can not only  
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be elements or not of a set, but there is a strength of their membership. In the case of a 

geometrical point (𝑥, 𝑦), it can also be considered as a fuzzy set, it has a  membership value 

𝜇 = 1 at the coordinate point (𝑥, 𝑦), and the membership value decreases to zero monotonously 

as we get further from the coordinate (𝑥, 𝑦), leaving its environment still be partially belonging 

to the fuzzy point (𝑥, 𝑦). Using this approach in the fuzzy transform, we can consider not only 

the coordinate point (𝑥, 𝑦) to give a vote 1 to the corresponding parameter space points, but 

also its environment can give votes proportional to their membership value. 

Algorithm 1: Classical Hough transform for a circle with parameters 𝐚, 𝐛 and 𝐫 

Requirements: 

      an edge image 𝐼[𝑖𝑥, 𝑖𝑦] with size 𝐿𝑥, 𝐿𝑦, 

      a finite parameter space 𝑉[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] with size 𝐿𝑎, 𝐿𝑏 , 𝐿𝑟 with initial values of 0 

      a threshold for peak percentage 𝑃𝑝, 

      a result image 𝑅[𝑖𝑥, 𝑖𝑦], with size 𝐿𝑥, 𝐿𝑦, with initial values of 0 

1: for each image row 𝑖𝑥 from 1 to 𝐿𝑥 

2:     for each image column 𝑖𝑦 from 1 to 𝐿𝑦 

3:         for each parameter space row 𝑗𝑎 from 1 to 𝐿𝑎 

4:             for each parameter space column 𝑗𝑏 from 1 to 𝐿𝑏 

5:                 for each parameter space 3rd dimension 𝑗𝑟 from 1 to 𝐿𝑟 

6:                     if 𝑗𝑟
2 = (𝑖𝑥 − 𝑗𝑎)

2 + (𝑖𝑦 − 𝑗𝑏)
2
 

7:                         𝑉[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] = 𝑉[𝑗𝑎, 𝑗𝑏, 𝑗𝑟] + 1 

8:                     end if 

9:                 end for 

10:             end for 

11:         end for 

12:     end for 

13: end for 

14: compute the global maximum 𝑀𝐺  in 𝑉[𝑗𝑎 , 𝑗𝑏 , 𝑗𝑟] 
15: compute local maxima 𝑀(𝑘) = 𝑉[𝑗𝑎,𝑘, 𝑗𝑏,𝑘, 𝑗𝑟,𝑘] 

16: select local maxima with 𝑀(𝑘) > 𝑃𝑝 ⋅ 𝑀𝐺   

17: calculate the number 𝑁𝑀 of the local maxima from line 16 

18: for each local maximum 𝑘 from 1 to 𝑁𝑀  

19:     for each result image row 𝑖𝑥 from 1 to 𝐿𝑥 

20:         for each result image column 𝑖𝑦 from 1 to 𝐿𝑦 

21:             if 𝑗𝑟,𝑘
2 = (𝑖𝑥 − 𝑗𝑎,𝑘)

2
+ (𝑖𝑦 − 𝑗𝑏,𝑘)

2
 

22:                 𝑅[𝑖𝑥, 𝑖𝑦] = 1  

23:             end if 

24:         end for 

25:     end for 

26: end for 
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This approach modifies the previously described classical Hough transform in the 

following way. (For the sake of generality, (𝑎, 𝑏, … ) were used, instead of (𝑎, 𝑏) to express the 

applicability to any type of parametric curves, not only straight lines). 

1. Divide the space of fuzzy points (𝑥, 𝑦) by a finite grid (if not already executed). 

2. Divide the transformed space (𝑎, 𝑏, … ) by a finite grid, it gives the resolution of the result. 

3. For each point (𝑎, 𝑏, … )  in the transformed space, and its environment add a vote 

proportional to the membership function for each fuzzy point (𝑥, 𝑦) in the original space, 

that is part of the fuzzy curve. 

4. Search for the maximum of votes 

a) If there is just one curve segment, the global maximum (𝑎𝑚𝑎𝑥,0, 𝑏𝑚𝑎𝑥,0, … )will be the 

approximation of parameter (𝑎0, 𝑏0, … ) of the curve we were looking for. 

b) If there are multiple curves, with longer and shorter segments, the local maxima 

(𝑎𝑚𝑎𝑥,𝑘, 𝑏𝑚𝑎𝑥,𝑘, … ) will also approximate parameters of the curves. 

The longer the curve in the original space, the more votes it obtains. By setting up a 

threshold the length of the detected segment can be controlled. 

5. The curves with the detected approximate parameters (𝑎𝑚𝑎𝑥,𝑘, 𝑏𝑚𝑎𝑥,𝑘, … ) can be drawn in 

the original space (𝑥, 𝑦). 

Practically, if all fuzzy points (𝑥, 𝑦) have the same membership distribution around them, 

then the 3rd step of the voting manifests in adding a vote 𝜇(|𝛼 − 𝑎|, |𝛽 − 𝑏|, … )  to the 

neighboring points (𝛼, 𝛽, … ) of the studied parameter space point (𝑎, 𝑏, … ). 

Using this approach made the Hough transform more tolerant to distortions from the 

original parametric curves. The utilization of circular Hough transform for searching for 

contours of polyps was made possible by this, i.e., the three-parameter Equation (3.3) could be 

used instead of the four-parameter Equation (3.4). 

Using these considerations, the pseudocode of the circular fuzzy Hough transform is as 

follows in Algorithm 2. 

The applied voting membership function was a 3D-Gaussian, as it had a rather wide 

region around the center that is still close to 1. For a given parameter point (𝑎0, 𝑏0, 𝑟0 ), the 

votes were given to the neighboring points ([𝑎0 − 𝜎, 𝑎0 + 𝜎], [𝑏0 − 𝜎, 𝑏0 + 𝜎], [𝑟0 − 𝜎, 𝑟0 +

𝜎] ) according to the membership function 
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Algorithm 2: Fuzzy Hough transform for a circle with parameters 𝐚, 𝐛,  and 𝐫 

Requirements: 

    an edge image 𝐼[𝑖𝑥, 𝑖𝑦] with size 𝐿𝑥, 𝐿𝑦, 

    a finite parameter space 𝑉[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] with size 𝐿𝑎, 𝐿𝑏, 𝐿𝑟, with initial values of 0 

    a threshold for peak percentage 𝑃𝑝, 

    a voting membership matrix 𝜇[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] with size 2𝑑𝑎 + 1, 2𝑑𝑏 + 1, 2𝑑𝑟 + 1 

    a result image 𝑅[𝑖𝑥, 𝑖𝑦], with size 𝐿𝑥, 𝐿𝑦, with initial values of 0 

1: for each image row 𝑖𝑥 from 1 to 𝐿𝑥 

2:     for each image column 𝑖𝑦 from 1 to 𝐿𝑦 

3:         for each parameter space row 𝑗𝑎 from 1 to 𝐿𝑎 

4:             for each parameter space column 𝑗𝑏 from 1 to 𝐿𝑏 

5:                 for each parameter space 3rd dimension 𝑗𝑟 from 1 to 𝐿𝑟 

6:                     if 𝑗𝑟
2 = (𝑖𝑥 − 𝑗𝑎)

2 + (𝑖𝑦 − 𝑗𝑏)
2
 

7: 

                        𝑉[{𝑗𝑎 − 𝑑𝑎, … , 𝑗𝑎 + 𝑑𝑎}, {𝑗𝑏 − 𝑑𝑏 , … , 𝑗𝑏 + 𝑑𝑏}, {𝑗𝑟 − 𝑑𝑟 , … , 𝑗𝑟 +
𝑑𝑟}] =… 

                        𝑉[{𝑗𝑎 − 𝑑𝑎, … , 𝑗𝑎 + 𝑑𝑎}, {𝑗𝑏 − 𝑑𝑏 , … , 𝑗𝑏 + 𝑑𝑏}, {𝑗𝑟 − 𝑑𝑟 , … , 𝑗𝑟 +
𝑑𝑟}] + 𝜇[𝑗𝑎, 𝑗𝑏, 𝑗𝑟] 

8:                     end if 

9:                 end for 

10:             end for 

11:         end for 

12:     end for 

13: end for 

14: compute the global maximum 𝑀𝐺  in 𝑉[𝑗𝑎 , 𝑗𝑏 , 𝑗𝑟] 

15: compute local maxima 𝑀(𝑘) = 𝑉[𝑗𝑎,𝑘, 𝑗𝑏,𝑘, 𝑗𝑟,𝑘] 

16: select local maxima with 𝑀(𝑘) > 𝑃𝑝 ⋅ 𝑀𝐺   

17: calculate the number 𝑁𝑀 of the local maxima from line 16 

18: for each local maximum 𝑘 from 1 to 𝑁𝑀  

19:     for each result image row 𝑖𝑥 from 1 to 𝐿𝑥  

20:         for each result image column 𝑖𝑦 from 1 to 𝐿𝑦  

21:             if 𝑗𝑟,𝑘
2 = (𝑖𝑥 − 𝑗𝑎,𝑘)

2
+ (𝑖𝑦 − 𝑗𝑏,𝑘)

2
 

22:                 𝑅[𝑖𝑥 , 𝑖𝑦] = 1  

23:             end if 

24:         end for 

25:     end for 

26: end for 

 

  𝜇(𝑎, 𝑏, 𝑟) = 𝑒𝑥𝑝 (−
(𝑎−𝑎0)2+(𝑏−𝑏0)

2+(𝑟−𝑟0)
2

2𝜎
).           (3.5) 

As an example, an image (No. 220 form database CVC-Colon), its preprocessing steps, 

and transformed images are shown in the following figures. Figure 3-1 shows the image after 

reflection removal, its ground truth mask and its Prewitt edge detected version. Figure 3-2 

shows the resulting votes for classical and fuzzy Hough transforms (for one with 𝜎 = 5 slight 
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fuzziness, and another with 𝜎 = 15, wide fuzziness). Each column has four images, two at the 

radius values belonging to the two main detected circles, and there are 2 pictures with radii 

slightly smaller and larger than the circle at the polyp. Figure 3-3 shows the detected circles for 

different thresholds compared to the global maximum of the votes. 

  
 

(a) (b) (c) 

Figure 3-1 A sample image (220) from database CVC-Colon (Bernal, Sanchez, & Vilariño, 
2012) for demonstrating the Hough transform steps, is shown in subplot (a), its ground truth 

mask in subplot (b), and the Prewitt edge detected version of the picture in subplot (c) 

 

3.2.2 Gradient filtering 

In mathematics, for a 2D continuous function, we use the partial derivatives to measure the 

degree of variation along each dimension. The edges in an image are segments that can be 

formed from the point locations where there is a rapid change in the image gray-level intensity 

in a small region. The connection between the previous two concepts made it possible to apply 

gradient filtering techniques in the field of image processing to detect edges. 

The gradient of an image intensity function is a 2D vector with two components defined 

by the horizontal and vertical derivatives at each image point, and using these two values, we 

can identify the strength of the edge’s magnitude and its orientation at each pixel. 

The common mathematical formulation of the gradient for 2D image is the following 

vector: 

  𝑮[𝑓(𝑥, 𝑦)] =  [𝐺𝑥
𝐺𝑦

] = [
𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

],           (3.6) 

where 𝑓 is the image intensity function, and 𝑥 and 𝑦 are the spatial coordinates of the image. 

The magnitude and direction of the gradient are consecutively given by the two equations 

below: 
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Figure 3-2 The Hough transformed images of the edge detected picture in subplot (c) of 

Figure 3-1. The center coordinates 𝑎 and 𝑏 are shown in one plane for 4 different values of 

the radius 𝑟. The number of votes is indicated by colors. It can be seen in the colorbar beside 

each image. The rows mean the different radii, the 1st row is 𝑟 = 42, the 2nd row is 𝑟 = 57 

(the radius of the final circle around the polyp), the 3rd row is 𝑟 = 72, and the 4th, last row is 

𝑟 = 115 (the radius of the other final circle). The columns mean the following: the 1st 

column: the classical Hough transform result, the 2nd column: 𝜎 = 5 fuzzy Hough transform, 

and the 3rd column: 𝜎 = 15 fuzzy Hough transform 
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Figure 3-3 The resulting final circles from the inverse Hough transform of the picture in 

Figure 3-1. Similar to Figure 3-2, the columns indicate the fuzziness of the transform, i.e., the 

1st column: classical Hough transform, the 2nd and 3rd columns: fuzzy Hough transform for 

𝜎 =  5 and 15, respectively. The rows in this case give the local maximum threshold 

compared to the global maximum. The 1st row: 50%, the 2nd row: 70%, and the 3rd row: 

90% of the global maximum 

 

  𝐺[𝑓(𝑥, 𝑦)] = √𝐺𝑥
2 + 𝐺𝑦

2 ,           (3.7) 

  𝛼(𝑥, 𝑦) =  𝑡𝑎𝑛−1 (
𝐺𝑦

𝐺𝑥
).           (3.8) 

All of the aforementioned considerations are carried out in the continuous domain. In the 

case of a digital image, where the intensity function is sampled at image discrete points, we 

replace the gradient operator by a discrete operation, i.e., by a convolution between the image 

and a kernel, which is a matrix of smaller size. For partial differentiation the discrete counterpart 

is taking the difference of neighboring pixels. The following gradient kernels are often used in 

practice. 
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𝑅𝑜𝑏𝑒𝑟𝑡𝑠1 = [
−1 0
0 1

],                       𝑅𝑜𝑏𝑒𝑟𝑡𝑠2 = [
0 −1
1 0

].        (3.9) 

 

𝑃𝑟𝑒𝑤𝑖𝑡𝑡𝑥 = [
−1 −1 −1
0 0 0
1 1 1

],                 𝑃𝑟𝑒𝑤𝑖𝑡𝑡𝑦 = [
−1 0 1
−1 0 1
−1 0 1

]. (3.10) 

 

  𝑆𝑜𝑏𝑒𝑙𝑥 = [
1 0 −1
2 0 −2
1 0 −1

],                      𝑆𝑜𝑏𝑒𝑙𝑦 = [
1 2 1
0 0 0

−1 −2 −1
]. (3.11) 

 

3.2.3 Roberts, Prewitt, and Sobel edge detection algorithms 

Edge detection methods can be used as mathematical techniques to identify particular locations 

in an image where the gray level intensities show discontinuities. The resulting edge maps serve 

as the basis for subsequent processing steps in numerous significant computer vision 

applications.  

The well-known Roberts, Prewitt, and Sobel edge detection algorithms are widely used 

because of their simplicity and easiness of implementation. All of these algorithms have the 

same work mechanism, but with different kernels. Each kernel has the effect of calculating the 

gradient in the specified direction. However, the choice of algorithm to be used depends on the 

desired application and the characteristics of the image being processed. 

Roberts edge detection method uses convolutional filters to detect the variations in the 

image gray-level intensity in the diagonal directions (Roberts, 1965), whereas Prewitt (Prewitt, 

1970) and Sobel (Sobel, 1978) methods use convolutional matrices to detect the changes in 

both 𝑥 and 𝑦 directions. 

The previously mentioned kernels, (3.9), (3.10), and (3.11), are used by the Roberts, 

Prewitt, and Sobel edge detection algorithms, consecutively. 

 

3.2.4 Canny edge detection algorithm 

John Canny first presented Canny edge detection in 1986 (Canny, 1986) as a multistep 

algorithm. Canny algorithm is looking for the connectivity of the edge points as well as the high 

gradient image points which makes it the most popular edge detection technique in many 

computer vision and image processing applications. This technique produces very reliable and 

highly accurate edge maps that are close to the human perception of edges. 
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The process of Canny algorithm consists of four main steps. First, the original image is 

refined using a Gaussian filter to remove unwanted noise. The applied Gaussian filter is defined 

as follows: 

  𝑔(𝑥, 𝑦) = 𝐺𝜎(𝑥, 𝑦) ∗ 𝑓(𝑥, 𝑦),           (3.12) 

where 

 𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 ).           (3.13) 

The convolution operator is represented by the symbol ∗, and the indices 𝑥 and 𝑦 are used to 

identify a pixel’s location within an image. The two-dimensional function 𝐺𝜎(𝑥, 𝑦)  is a 

Gaussian function with the variance of 𝜎2. 

The smoothened image’s gradient magnitude and direction are then calculated using a 

certain gradient operator, i.e., Roberts, Prewitt, or Sobel. The third step is implementing the 

Non-maximum Suppression (NMS) approach to check if the pixels are part of the local maxima, 

and if not, they are put down to zero. Two hysteresis high and low thresholds are computed in 

the final step. Every edge point with a gradient value greater than the higher threshold is 

identified as a strong edge, whereas the edge points whose gradient values fall below the lower 

threshold are eliminated. The connectivity of the residual edge points which have gradient 

values between the low and high thresholds is tested: the examined point is considered as an 

edge pixel only if at least one of the neighboring pixels is a strong edge pixel (Kalbasi & 

Nikmehr, 2020). 

3.3 Practical application of the proposed method 

3.3.1 Edge detection methods—application, evaluation, and selection 

For these tasks, several processing steps were carried out. They are sequentially summarized 

below together with the illustrated figures and plots. The publicly available colonoscopy image 

databases, CVC-Clinic (Bernal J. , et al., 2015), CVC-Colon (Bernal, Sanchez, & Vilariño, 

2012), and ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014) were used. 

1. Cutting off the black frame surrounding all original images to reduce unnecessary 

information. 

2. Removing the colonoscope’s light reflections: The colonoscope light’s reflections (and 

consequently their contours) were removed from all the databases’ images as a step towards 

reducing the number of redundant edge pixels (Figure 3-4, subplot (b)). The histogram of 

the image pixel intensities was used as the basis for the reflection removal step. Briefly, the 
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histogram’s highest and lowest intensity peaks were cut out, and then the pixel intensities 

were re-normalized to the original [0 to 255] domain. A “white mask” was created using the 

pixels that made up the histogram’s highest peak. Like the procedure described in (Csimadia 

& Nagy, 2014), the “white mask” was extended and smoothened into the neighboring pixels. 

3. Extracting polyp contour: For each of the ground truth masks (Figure 3-4, subplot (c)), the 

contour was defined (Figure 3-4, subplot (d)). The number of pixels that make up the polyp 

mask contour was calculated for later use in the evaluation process. 

4. Generating the “ring mask” for the colorectal polyp contour: In many cases of the manually 

drawn masks, the edges of the polyp’s contour are not completely visible, either because 

the polyp is located in the area of bowel folds, or it is covered with impurities. Moreover, 

reasons related to human fatigue or error can also affect the drawing accuracy of the 

colorectal polyp mask. These are the main reasons why it was necessary to extend the 

contour of the manually drawn database mask to a finite width ring which is proportional 

to the size of the examined image.  

The previously extracted contour was extended into a ring (Figure 3-4, subplot (e)). To do 

that, the first 𝑥 nearest pixels of the entire contour were selected as a width of the ring mask. 

As the databases images are with different sizes, different ring mask widths based on the 

database images size were used (they were 𝑥 = 3 for database CVC-Clinic (Bernal J. , et 

al., 2015), 𝑥 = 5 for database CVC-Colon (Bernal, Sanchez, & Vilariño, 2012), and 𝑥 =

10 for database ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014)). 

5. Calculating the gradient magnitude for each of the studied samples, like in (Figure 3-4, 

subplot (f)). 

6. Detecting polyp edges: Canny, Prewitt, Roberts, and Sobel techniques were applied as four 

different edge detection methods (Figure 3-5, subplots (a), (c), (e), (g) respectively). By 

employing this edge detection operation, it becomes possible to decrease the time required 

for the following pre-processing steps and offer a comparatively consistent data source that 

tolerates geometric and environmental variations while performing the Hough transform 

calculations. The total number of edge pixels resulting from each filtering technique for all 

the images of the three databases was calculated and plotted in Figure 3-6. 

7. Finding the gradient-weighted edges: The edge filtered images (Figure 3-5, subplots (a), 

(c), (e), (g)) were multiplied by the gradient magnitude output (Figure 3-4, subplot (f)). The 

reason for performing this multiplication step is to determine the gradient magnitude 

domain, where the polyp edges are most likely to be present within the whole gradient 
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domain.  

As an example, images like (Figure 3-5, subplots (b), (d), (f), (h)) for Canny, Prewitt, 

Roberts, and Sobel techniques were received. (It is visible that in contrast with the full 

gradient subplot (Figure 3-4, subplot (f)), subplots (b), (d), (f), (h) in Figure 3-5 contain the 

gradient values only where the edge mask value is 1, i.e., where the white pixels are located 

in subplots (a), (c), (e), (g) in Figure 3-5. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 3-4 First 5 steps of the edge detection algorithm selection process. 1st row: (a) The 

original image of the sample (111) from database CVC-Clinic (Bernal J. , et al., 2015), (b) 

the preprocessed image version, and (c) its ground truth polyp mask. 2nd row: (d) The mask 

contour, (e) the extended contour ring mask, i.e., the 3 nearest neighbors in all directions for 

all the contour pixels, and (f) the gradient magnitude filtered image 

 

8. Normalizing: To make the proposed approach universally applicable, for all the pictures in 

all the databases, the gradient-weighted edges pixels were normalized into the interval [0, 

1] for each image separately. 

9. Counting the number of the edge pixels located inside the ring mask, (this number serves 

as the reference: it is the number of the useful edge pixels). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 

Figure 3-5 Steps 6 and 7 of the edge detection algorithm selection process. 1st row: (a) The 

Canny edge detected version of Figure 3-4 image, and (b) the Canny edge masked gradient 

magnitude image. The 2nd, 3rd, and 4th rows are exactly like the 1st row, but for Prewitt (c), 

(d), Roberts (e), (f), and Sobel (g), (h) edge detection methods consecutively 

 

10. Calculating the final evaluation metrics: Considering the application requirements, two 

quantities were introduced to evaluate each of the four implemented edge detection 

methods. For each image of the three studied databases, the statistics calculated in the 

previous steps (the total number of pixels in the polyp mask contour, the total number of 

edge pixels resulted from each edge detection method, and the total number of edge pixels 
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inside the ring mask) were used in composition the following two metrics. 

a. The first evaluation parameter, i.e., the one referring to the calculation efficiency, is 

defined by the ratio between the number of edge pixels in the ring mask around the 

polyp contour and the total number of edge pixels in the entire image, 

  

 𝑅_𝑐𝑎𝑙𝑐 =
(𝑁𝑜.𝑜𝑓 𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔 𝑚𝑎𝑠𝑘)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠)
.           (3.14) 

 

This ratio represents the quality of the edge detection method regarding the Hough 

transforms and polyp detection. 𝑅_𝑐𝑎𝑙𝑐 values’ range is between 0 and 1. The higher 

this ratio is, the fewer non-mask contour edges are identified, and the less unneeded 

calculation is required in the classical or fuzzy Hough transform. Figure 3-7 shows the 

values of this metric resulting from Canny, Prewitt, Roberts, and Sobel filtering 

techniques for the three databases. 

b. The second evaluation parameter, i.e., the metric referring to the goodness of the edge 

pixels finding the ideal polyp contour (derived from the ground truth mask), is given 

by the ratio between the number of edge pixels in the ring mask and the number of 

pixels in the database polyp mask contour, 

 

 𝑅_𝑒𝑑𝑔𝑒 =
(𝑁𝑜.𝑜𝑓 𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔 𝑚𝑎𝑠𝑘)

(𝑁𝑜.𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑚𝑎𝑠𝑘 𝑐𝑜𝑛𝑡𝑜𝑢𝑟)
.           (3.15) 

 

In ideal case, this ratio should be as close to 1 as possible. Figure 3-8 displays the values 

of this metric resulting from all edge detection techniques for all studied databases. 

We have to note that the detected edge pixels in the ring mask may not exactly be the 

same as the edge pixels in the manually drawn database mask contour, but they still 

could be used for finding the polyp. 
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Figure 3-6 The total number of edge pixels resulting from Canny, Prewitt, Roberts, and Sobel techniques for 

the three databases 

  

 

Figure 3-7 Metric 𝑅_𝑐𝑎𝑙𝑐 values resulting from Canny, Prewitt, Roberts, and Sobel techniques for the 

three databases. Databases CVC-Clinic (Bernal J. , et al., 2015) and CVC-Colon (Bernal, Sanchez, & 

Vilariño, 2012) are shown here 
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Figure 3-7 (continued): Metric 𝑅_𝑐𝑎𝑙𝑐 values resulting from Canny, Prewitt, Roberts, and Sobel 

techniques for the three databases. Database ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014) 

is shown here  
 

  

 

 

Figure 3-8 Metric 𝑅_𝑒𝑑𝑔𝑒 values resulting from Canny, Prewitt, Roberts, and Sobel techniques for 

the three databases 
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11. Selecting the most appropriate edge detection technique: Canny method detects a wide 

range of fine edges and gives a dense detailed edges map. It also tends to connect edge 

pixels to continuous edge lines, in contrast with the other three techniques. Figure 3-6 

clearly shows the large difference between the total number of edge pixels resulting from 

Canny and the other three edge detection methods. Prewitt, Roberts, and Sobel have very 

similar results for the majority of samples. As the research focus is not just on decreasing 

the number of edge points scanned by the Hough transform, but also in increasing the 

efficiency of finding the colorectal polyp, the basis for selecting the most appropriate edge 

detection technique was derived from the definitions of the previous two evaluation metrics 

𝑅_𝑐𝑎𝑙𝑐 and 𝑅_𝑒𝑑𝑔𝑒 as following. 

a. Selection of the most appropriate edge detection technique using 𝑹_𝒄𝒂𝒍𝒄 : Two 

different selection strategies using metric 𝑅_𝑐𝑎𝑙𝑐 were tested. Based on the definition 

of 𝑅_𝑐𝑎𝑙𝑐, the nearest the value 𝑅_𝑐𝑎𝑙𝑐 to 1 is, the better the filter is. 

According to the 1st strategy, the filter that has the mean of the metric 𝑅_𝑐𝑎𝑙𝑐 values 

closest to 1 can be selected. For each database and each type of the four edge detection 

methods, the mean of the 𝑅_𝑐𝑎𝑙𝑐 values was calculated. 

However, for the values of metric 𝑅_𝑐𝑎𝑙𝑐 , in all databases, for all the four edge 

detection techniques, there was many samples between [0, 0.1], as it is visible in Figure 

3-7. This is the reason why another strategy has to be considered as well. 

According to the 2nd strategy, the filter which has the most samples close to the ideal 

value can be selected. For this purpose, a goodness interval can be defined, and the 

number of samples within that interval can be calculated. For every edge detection 

technique, the number of samples in each database that has a 𝑅_𝑐𝑎𝑙𝑐 value greater than 

0.1 was checked as a measure of the filter suitability. Accordingly, the higher the 

number of resulting samples, the better the filter is. Of course, the percentage of this 

number within the total number of images in each database must be considered; 

database CVC-Clinic has 612 images (Bernal J. , et al., 2015), database CVC-Colon  

has 379 images (Bernal, Sanchez, & Vilariño, 2012), and database ETIS-Larib has 196 

images (Silva, Histace, Romain, Dray, & Granado, 2014). Table 3-2 lists the total 

results of this step. 
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 Table 3-2 Results of selection the most appropriate edge detection technique using metric 

𝑅_𝑐𝑎𝑙𝑐 

 

b. Selection of the most appropriate edge detection technique using 𝑹_𝒆𝒅𝒈𝒆: Two 

different choosing strategies based on metric 𝑅_𝑒𝑑𝑔𝑒 were also tested. 

According to the 1st strategy, similar to the test which was executed for 𝑅_𝑐𝑎𝑙𝑐 values, 

a test of how similar the 𝑅_𝑒𝑑𝑔𝑒 results to their ideal value can be employed. However, 

instead of calculating the mean value, the mean absolute error (MAE) value for metric 

𝑅_𝑒𝑑𝑔𝑒 from its ideal value 1 was calculated. For this criterion, the smallest MAE 

value nominates the better filter. 

According to the 2nd strategy, as metric 𝑅_𝑒𝑑𝑔𝑒 should be as close to 1 as possible, 

finding the goodness interval around 𝑅_𝑒𝑑𝑔𝑒 = 1 was suggested, and each sample that 

has 𝑅_𝑒𝑑𝑔𝑒  value within [0.5, 1.5] was considered among the good samples. 

Consequently, the higher the number of samples within the goodness interval, the better 

the filter is. Table 3-3 arranges the total results of this step. 

Table 3-3 Results of selection the most appropriate edge detection technique using metric 

𝑅_𝑒𝑑𝑔𝑒 

 Canny Prewitt Roberts Sobel  

1st strategy: 𝑅_𝑒𝑑𝑔𝑒  

MAE 

0.459919 0.447193 0.579451 0.44937 CVC-Clinic 

0.779827 0.582246 0.683746 0.588328 CVC-Colon 

2.609909 0.44718 0.536933 0.451125 ETIS-Larib 

2nd strategy: 

Num. of samples with 

0.5 < 𝑅_𝑒𝑑𝑔𝑒 < 1.5 

346 353 221 349 CVC-Clinic 

132 156 90 152 CVC-Colon 

4 122 88 121 ETIS-Larib 

 

The highlighted results presented in the above two tables show that the Prewitt filter is the most 

appropriate edge detection technique based on the proposed selection strategies using both 

metrics 𝑅_𝑐𝑎𝑙𝑐 and 𝑅_𝑒𝑑𝑔𝑒 in most cases. 

It should be noted from Table 3-2 (2nd strategy) that the results of Sobel filter are very close to 

the Prewitt ones, especially for database CVC-Clinic: they are the same. Moreover, for database 

 Canny Prewitt Roberts Sobel  

1st strategy: 𝑅_𝑐𝑎𝑙𝑐 

Mean 

0.063001 0.153718 0.147087 0.152823 CVC-Clinic 

0.04806 0.099965 0.081437 0.09925 CVC-Colon 

0.026186 0.06001 0.049776 0.059926 ETIS-Larib 

2nd strategy: 

Num. of samples with 

𝑅_𝑐𝑎𝑙𝑐 > 0.1 

70 394 360 394 CVC-Clinic 

29 138 108 141 CVC-Colon 

0 35 22 33 ETIS-Larib 
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CVC-Colon, the number of samples that had an 𝑅_𝑐𝑎𝑙𝑐 value greater than 0.1 is three samples 

more in the Sobel filter than in the Prewitt case. 

The flowchart in Figure 3-9 summarizes the overall edge detection method selection procedure. 

 

Figure 3-9 Flowchart of the edge detection method selection procedure 

 

3.3.2 Gradient-based thresholding for Prewitt edge detection results 

In this part of the proposed method, the dynamic distribution of the normalized gradient-

weighted edges pixels resulting from the Prewitt method of both the ring mask (i.e., the area 

surrounding the ground truth mask contour) and the full image was studied by generating the 

individual histograms of all images in all databases. 

Four individual histograms of four different samples are plotted in Figure 3-10. As in most 

of the cases the gradient intensities were in the first 20%, the density of the histogram bins in 

that domain were made to be larger. This dividing of the normalized gradient range resulted in 
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a more detailed tendency view in the domain with dense bin distribution. Additionally, as the 

column height in the dense bin distribution domain became relatively smaller, thus, the visibility 

of the small column magnitudes in the other parts of the histogram (i.e., in the higher normalized 

gradient domain) became better. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3-10 Histograms of the normalized gradient-weighted edge pixels resulting from 
Prewitt method for four different samples (examples from Database CVC-Clinic (a), (c), CVC-
Colon (d), and ETIS-Larib (b), are selected so, that typical behaviors would be visible). The 

interval [0, 0.2] has narrower bins, as most of the values in most of the samples were 
concentrated there, and higher resolution results were needed in this domain. (The yellow 

histograms for the ring masks are semitransparent, plotted in front of the teal columns for the 
full images) 

 

In most of the cases, the distributions of the full image edges (cyan) and the ring mask 

edges (yellow) showed a very similar tendency with different magnitude, like in the case of the 

first example, subplot (a) of Figure 3-10. Very often besides the similar tendency in the low 

gradient domain, the higher gradient parts were missing in the case of the ring mask edges, like 
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in the 2nd and 3rd examples (subplots (b) and (c)). In some other cases, the distributions of the 

full picture and the ring mask had different tendencies, like in the case of the 4th example, in 

subplot (d). 

To summarize the results of the individual histograms, 3D-histograms were created for 

the three databases with the picture number being the 3rd dimension. These total histograms 

are plotted in Figures 3-11 and 3-12. 

  

  

  

Figure 3-11 The total histograms (linear scale) of the normalized gradient-weighted edges 

pixels resulted from Prewitt edge detection method. The 1st column is for the edge points in 

the full images, and the 2nd column is for the edge points in the corresponding ring masks, 

for the databases CVC-Clinic (Bernal J. , et al., 2015), CVC-Colon (Bernal, Sanchez, & 

Vilariño, 2012), and ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014). The 

horizontal axes are the normalized gradient magnitudes intervals and the picture number in 

the given database 
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Figure 3-12 The top view of the logarithmic scale plots for the total histograms of the 

normalized gradient-weighted edges pixels resulted from Prewitt edge detection method. The 

1st column is for the edge points in the full images, and the 2nd column is for the edge points 

in the corresponding ring masks, for the databases CVC-Clinic (Bernal J. , et al., 2015), 

CVC-Colon (Bernal, Sanchez, & Vilariño, 2012), and ETIS-Larib (Silva, Histace, Romain, 

Dray, & Granado, 2014). The horizontal axis is the picture number in the given database and 

the vertical axis is the normalized gradient magnitudes intervals 

 

Figure 3-11 shows the perspective view in linear scale, while Figure 3-12 gives the top 

view of the same histograms in logarithmic scale. It is worth mentioning that the linear and 

logarithmic scale plots of the same histogram are both given, because the smaller valued 

histogram parts at the lowest and the highest normalized gradient bins cannot be observed well 

in the linear scale plots of the total histograms. On the other hand, the top view of the 
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logarithmic scale plots makes the entire set of data viewable without columns blocking the ones 

behind them. 

Based on results in Figures 3-11 and 3-12, it is visible that the edges with very high 

gradient values do not belong to the polyp edge, i.e., most of the ring mask edge results have 0 

values over 0.3. Additionally, they have zero values below 0.06. Moreover, in many cases this 

lower limit can be brought up to 0.08, and the upper limit can be as low as 0.2. This property 

was used, and the edges with too high and too low gradient magnitudes were omitted to both 

reduce the number of pixels to be Hough transformed and to sort out those pixels that certainly 

do not belong to the polyp edges. Thus, in the next calculations, beside the full Hough 

transforms for all the edges, a restricted Hough transform for the edges with normalized 

gradient values within a wide threshold interval [0.06, 0.3] and a thin threshold interval [0.08, 

0.2] was performed. The full Hough transform results can be interpreted as a reference, to 

analyze how the restricted transforms influence the results. 

 

3.3.3 Gradient-weighted voting approach for classical and fuzzy Hough transforms 

In addition to excluding the edge points with too high or too low contrast (i.e., gradient 

thresholding), the gradient values can be used for another purpose, namely, to modify the voting 

process. 

Even after the thresholding, polyp contours usually have segments with higher gradient 

magnitudes, mixed with lower gradients, whereas some of the background patterns have very 

low gradients. To decrease the influence of these lower gradient background edges on the 

Hough transform results, the following weighted voting approach was introduced. 

During the original Hough transform, all edge points receive the same vote, no matter 

how strong these edges are. In the proposed method, instead of 1, each point uses its normalized 

gradient magnitude as a vote. In the case of the fuzzy Hough transforms, the whole voting 

membership function is multiplied by the gradient magnitude of the given pixel. As a result, the 

smaller the step in the intensity at the edge is, the smaller the weight in the voting becomes for 

the edge point, no matter if it is a classical or a fuzzy point. To clarify better, the pseudocode of 

the fuzzy circular Hough transform with gradient-weighted voting approach is given in 

Algorithm 3. 

The performance of the proposed voting technique was evaluated using selected samples 

from each database for three main cases. The first case was the original case where the full 

Hough transforms (classical and fuzzy) for all the edges without any thresholding were applied. 
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Algorithm 3: Fuzzy Hough transform for a circle with parameters 𝐚, 𝐛, and 𝐫 

with gradient-weighted voting approach 

Requirements: 

    an edge image 𝐼[𝑖𝑥, 𝑖𝑦] with size 𝐿𝑥, 𝐿𝑦 

    a gradient magnitude image 𝐺[𝑖𝑥, 𝑖𝑦] with size 𝐿𝑥, 𝐿𝑦 

    a finite parameter space 𝑉[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] with size 𝐿𝑎, 𝐿𝑏, 𝐿𝑟 with initial values of 0 

    a threshold for peak percentage 𝑃𝑝, 

    a threshold interval for the gradient magnitudes [𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥] 
    a voting membership matrix 𝜇[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] with size 2𝑑𝑎 + 1, 2𝑑𝑏 + 1, 2𝑑𝑟 + 1 

    a result image 𝑅[𝑖𝑥, 𝑖𝑦], with size 𝐿𝑥, 𝐿𝑦, with initial values of 0 

1: for each image row 𝑖𝑥 from 1 to 𝐿𝑥 

2:     for each image column 𝑖𝑦 from 1 to 𝐿𝑦 

3:         for each parameter space row 𝑗𝑎 from 1 to 𝐿𝑎 

4:             for each parameter space column 𝑗𝑏 from 1 to 𝐿𝑏 

5:                 for each parameter space 3rd dimension 𝑗𝑟 from 1 to 𝐿𝑟 

6:                     if 𝑗𝑟
2 = (𝑖𝑥 − 𝑗𝑎)

2 + (𝑖𝑦 − 𝑗𝑏)
2
 and 𝑔𝑚𝑖𝑛 ≤ 𝐺[𝑖𝑥, 𝑖𝑦] ≤ 𝑔𝑚𝑎𝑥 

7: 

                        𝑉[{𝑗𝑎 − 𝑑𝑎, … , 𝑗𝑎 + 𝑑𝑎}, {𝑗𝑏 − 𝑑𝑏 , … , 𝑗𝑏 + 𝑑𝑏}, {𝑗𝑟 −
𝑑𝑟 , … , 𝑗𝑟 + 𝑑𝑟}] =… 

                        𝑉[{𝑗𝑎 − 𝑑𝑎, … , 𝑗𝑎 + 𝑑𝑎}, {𝑗𝑏 − 𝑑𝑏 , … , 𝑗𝑏 + 𝑑𝑏}, {𝑗𝑟 −

𝑑𝑟 , … , 𝑗𝑟 + 𝑑𝑟}] + 𝐺[𝑖𝑥, 𝑖𝑦] ⋅ 𝜇[𝑗𝑎, 𝑗𝑏 , 𝑗𝑟] 

8:                     end if 

9:                 end for 

10:             end for 

11:         end for 

12:     end for 

13: end for 

14: compute the global maximum 𝑀𝐺  in 𝑉[𝑗𝑎 , 𝑗𝑏 , 𝑗𝑟] 

15: compute local maxima 𝑀(𝑘) = 𝑉[𝑗𝑎,𝑘, 𝑗𝑏,𝑘, 𝑗𝑟,𝑘] 

16: select local maxima with 𝑀(𝑘) > 𝑃𝑝 ⋅ 𝑀𝐺   

17: calculate the number 𝑁𝑀 of the local maxima from line 16 

18: for each local maximum 𝑘 from 1 to 𝑁𝑀  

19:     for each result image row 𝑖𝑥 from 1 to 𝐿𝑥  

20:         for each result image column 𝑖𝑦 from 1 to 𝐿𝑦  

21:             if 𝑗𝑟,𝑘
2 = (𝑖𝑥 − 𝑗𝑎,𝑘)

2
+ (𝑖𝑦 − 𝑗𝑏,𝑘)

2
 

22:                 𝑅[𝑖𝑥, 𝑖𝑦] = 1  

23:             end if 

24:         end for 

25:     end for 

26: end for 

 

The traditional voting technique was followed, where each edge point obtains one vote if it is 

eligible. The other two cases were the restricted Hough transforms for the edges with 

normalized gradient values within the wide threshold interval [0.06, 0.3] and the thin threshold 
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interval [0.08, 0.2]. For these two cases, the modified, gradient-weighted voting technique was 

used. 

In addition to the classical Hough transform, the fuzzy Hough transform was also studied 

in each case, with  𝜎 = 3,5,7,9,11,13 and 15 from the voting membership function (3.5). (In 

order to simplify the referring to these transform types, the classical transform may be 

considered as a fuzziness parameter 𝜎 = 0). 

When selecting the final circles, i.e., the local maxima in the transformed image, a 

threshold 𝑃𝑝 is to be set within the Hough transforms. The arising circles (their number and 

location) were studied for different local maximum thresholds, namely for 𝑃𝑝 =

50%, 60%, 70%, 80%, and 90% of the global maximum of the votes. 

The goal of this evaluation step is to determine, how many of the final circles are around 

the polyp for the various 𝜎 s and local maximum thresholds 𝑃𝑝 s. For this purpose, the total 

number of circles 𝑁𝑡𝑜𝑡𝑎𝑙 was counted. A circle was considered to be around the polyp by testing, 

if its center was inside the ground truth mask, and it had points within the ring mask around the 

polyp contour. The number of such circles within the ring mask 𝑁𝑟𝑖𝑛𝑔 was also counted. The 

ratio 

 𝐴𝑟 =
𝑁𝑟𝑖𝑛𝑔

𝑁𝑡𝑜𝑡𝑎𝑙
           (3.16) 

was used as a metric for effectiveness of finding circles related to the polyp. If 𝐴𝑟 is 0, then the 

polyp is not found, if  𝐴𝑟 is too small, then too many other circles are found, and if 𝐴𝑟 is around 

1, then the circle(s) around the polyp are found, but not many other circles can be seen in the 

final results. 

To test the different types of Hough transforms’ tolerance degree to the deviation from 

the circle, it is necessary to know the size of the polyps as well as their roundness. To calculate 

the average radius of the polyp 𝑟𝑎𝑣𝑔, the maximum and minimum coordinates of the polyp mask 

in 𝑥 and 𝑦 direction were used as follows, 

  𝑟𝑎𝑣𝑔 =
(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)

2
.           (3.17) 

The center of the polyp was determined as the average of these coordinates, 

  (𝑐𝑥, 𝑐𝑦) = (
(𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛)

2
,
(𝑦𝑚𝑎𝑥+𝑦𝑚𝑖𝑛)

2
).           (3.18) 

This center point and the average radius were used to determine the radial displacement for 

each mask contour point (𝑚𝑥, 𝑚𝑦) by 
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  𝛥𝑟𝑎𝑑𝑖𝑎𝑙 = |√(𝑚𝑥 − 𝑐𝑥)2 + (𝑚𝑦 − 𝑐𝑦)
2
− 𝑟𝑎𝑣𝑔|.           (3.19) 

The roundness error can be measured by the maximum of the ratio of the radial displacements 

and the average radius: 

  𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 (
𝛥𝑟𝑎𝑑𝑖𝑎𝑙

𝑟𝑎𝑣𝑔
).           (3.20) 

The larger the roundness error 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠, the more the shape deviates from circle. Please note, 

the roundness error of a circle with diameter of 30 pixels can still be as large as 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠,30 =

0.04, which decreases for a circle twice as large (i.e., of diameter 60 pixels) to 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠,60 =

0.03 . Typically, an ellipse with large axis being double the size of the smaller axis have 

roundness error of about 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 ≈ 0.33 , while with axis ratio 1:3, this increases to 

𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 ≈ 0.45, depending on the size of the ellipse in pixels. 

3.4 Results and discussion 

3.4.1 Number of circles found by the algorithm 

In this section, the values of 𝐴𝑟 by 𝜎s and 𝑃𝑝s are given for databases CVC-Clinic (Bernal J. , 

et al., 2015), CVC-Colon (Bernal, Sanchez, & Vilariño, 2012), and ETIS-Larib (Silva, Histace, 

Romain, Dray, & Granado, 2014). The total number of circles found on the images 𝑁𝑡𝑜𝑡𝑎𝑙 is 

also important, because as few circles, and thus, ROIs as possible are needed for the steps after 

the Hough transform. For this reason, 𝑁𝑡𝑜𝑡𝑎𝑙 is also plotted for the three databases. In Figures 

3-13, and 3-14, the values 𝐴𝑟 and 𝑁𝑡𝑜𝑡𝑎𝑙 are given for CVC-Clinic, then in Figures 3-15 and 

3- 16 for CVC-Colon, and finally for ETIS-Larib in Figures 3-17 and 3-18. Figures 3-14, 3-16 

and 3-18 together with Figures 3-13, 3-15 and 3-17, completely cover the number of circles 

found in the complete image and in the ring masks. 

The test images were selected so that their 𝑅_𝑐𝑎𝑙𝑐 values would be larger than 0.1. Both 

roundish and elongated polyps were selected from all three databases. The images with their 

ground truth masks are given in Appendix C. The image numbers and their respective 𝑅_𝑐𝑎𝑙𝑐 

and 𝑅_𝑒𝑑𝑔𝑒 values together with the total number of Prewitt edge pixels for each tested sample 

can be found in Table 3-4. To make the chapter more accessible to the reader, abbreviations and 

nomenclature section of the proposed approach is also presented in Appendix D. 

In order to check the applicability of the proposed method, some images (two from each 

database) that have unfavorable, very small 𝑅_𝑐𝑎𝑙𝑐 values were selected. These “bad” images 
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are shown as the first two images of the figures illustrating the tests samples in Appendix C, as 

well as the first two lines of Table 3-4. These images all found zero circles in the ring mask, 

except for one case CVC-Colon 255, for the original, non-gradient-weighted voting method. 

This is why their results are not shown in Figures {3-13, to 3-18}. 

In Figures 3-13, 3-15 and 3-17 the values of the ratio 𝐴𝑟 = 𝑁𝑟𝑖𝑛𝑔/𝑁𝑡𝑜𝑡𝑎𝑙 are shown for 

databases CVC-Clinic (Bernal J. , et al., 2015), CVC-Colon (Bernal, Sanchez, & Vilariño, 

2012), and ETIS-Larib (Silva, Histace, Romain, Dray, & Granado, 2014), respectively. 

In Figures {3-13, to 3-18}, each plot has three segments along the vertical axis. The 

uppermost segment shows the original Hough transform’s 𝐴𝑟 values. These are the reference 

values to which the other results should be compared. The next, middle segment corresponds 

to the gradient-weighted voting with wider threshold, and the lowermost segment belongs to 

the gradient-weighted voting with a thinner threshold. Each line in each segment belongs to one 

image, similar to the order of Table 3-4 (except for the first two lines in each database, i.e., the 

“bad” images). 

The plots have segments along the horizontal axes, too: the upper subplot has the results 

grouped by the peak percentage 𝑃𝑝  (i.e., threshold for the local maxima of the voting map 

(𝑎, 𝑏, 𝑟) to be considered as the circles), and each segment lists the 𝜎s from classical (i.e., 𝜎 =

0) till the widest fuzziness parameter 𝜎 = 15. The lower subplot orders the values the opposite 

way: the segments belong to various fuzziness parameters 𝜎 , while the columns within the 

segments belong to the peak percentages 𝑃𝑝 = 50%, 60%, 70%, 80%, and 90%. The colored 

squares mean the number of circles found in the ring mask versus the total number of circles 

for a given image, for a given (𝑃𝑝, 𝜎) pair. The darker red the little square is, the fewer circles 

outside of the polyp contour domain are found. If the little square is bright green, then no circle 

is found in the polyp contour’s ring mask. 

From Figure 3-13 we can conclude that for database CVC-Clinic the fuzzy Hough 

transforms can mostly find circles belonging to polyp contours (most of the little squares in the 

maps are red). 

The classical transform’s results are either very good (dark red) or very bad (green). 

Mostly, increasing the threshold improves the results, the circles will be more in the area 

of the polyp contour, but the 90% threshold might be too much. It loses the circles in the ring 

mask for some cases. Thus, the most ideal value for 𝑃𝑝 is 70–80% of the global maximum of 

the votes. 
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Figure 3-13 The ratio 𝐴𝑟 for the database CVC-Clinic (Bernal J. , et al., 2015). The vertical 

axis represents the various sample pictures (images 111, 150, 188, 217, 265, 390, 475, 480, 

503, and 504) for both the non-gradient-weighted (original), and gradient-weighted voting 

process with wide and thin thresholds, respectively. Each section has all the sample images in 

the above given order, and there is a line of white points to indicate the borders between the 

sections. The horizontal axes have the local maximum threshold percentages 𝑃𝑝, as well as 

the various fuzziness parameters 𝜎 of the Hough transform. The 1st subplot shows the 

different values of 𝜎 for each local maximum threshold level in increasing order. Here also a 

column of white dots separates the sections belonging to the given threshold rates. The 2nd 

subplot gives the same results as the 1st one, only the horizontal axis is grouped the opposite 

way: the main groups belong to the various 𝜎 values, and within each segment the local 

maximum threshold values increase 
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Figure 3-14 The total number of circles 𝑁𝑡𝑜𝑡𝑎𝑙 found in the sample images of database CVC-

Clinic (Bernal J. , et al., 2015). The vertical axis represents the various sample pictures 

(images 111, 150, 188, 217, 265, 390, 475, 480, 503, and 504) for both the non-gradient-

weighted (original), and gradient-weighted voting process with wide and thin thresholds, 

respectively. The horizontal axis is grouped the following way: the main groups belong to the 

various 𝜎 values, and within each segment the local maximum threshold values increase 

 

Figure 3-15 The ratio 𝐴𝑟 for the database CVC-Colon (Bernal, Sanchez, & Vilariño, 2012). 

The vertical axis represents the various sample pictures (images 62, 74, 101, 128, 149, 220, 

230, and 283) for both the non-gradient-weighted (original), and gradient-weighted voting 

process with wide and thin thresholds, respectively. The horizontal axis has the local 

maximum threshold percentages 𝑃𝑝, similar to first plot in Figure 3-13 
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Figure 3-15 (continued): The ratio 𝐴𝑟  for the database CVC-Colon (Bernal, Sanchez, 

& Vilariño, 2012). The vertical axis represents the various sample pictures (images 62, 74, 

101, 128, 149, 220, 230, and 283) for both the non-gradient-weighted (original), and 

gradient-weighted voting process with wide and thin thresholds, respectively. The horizontal 

axis has the various fuzziness parameters 𝜎 of the Hough transform, similar to second plot in 

Figure 3-13 

 

 

 

Figure 3-16 The total number of circles 𝑁𝑡𝑜𝑡𝑎𝑙 found in the sample images of database CVC-

Colon (Bernal, Sanchez, & Vilariño, 2012). The vertical axis represents the various sample 

pictures (images 62, 74, 101, 128, 149, 220, 230, and 283) for both the non-gradient-

weighted (original), and gradient-weighted voting process with wide and thin thresholds, 

respectively. The horizontal axis is grouped similarly to Figure 3-14 
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Figure 3-17 The ratio 𝐴𝑟 for the database ETIS-Larib (Silva, Histace, Romain, Dray, & 

Granado, 2014). The vertical axis represents the various sample pictures (images 25, 65, 82, 

138, and 160) for both the non-gradient-weighted (original), and gradient-weighted voting 

process with wide and thin thresholds, respectively. The horizontal axes have the local 

maximum threshold percentages 𝑃𝑝, as well as the various fuzziness parameters 𝜎 of the 

Hough transform, similar to Figures 3-13 and 3-15 

 

Figure 3-18 The total number of circles 𝑁𝑡𝑜𝑡𝑎𝑙 found in the sample images of database ETIS-

Larib (Silva, Histace, Romain, Dray, & Granado, 2014). The vertical axis represents the 

various sample pictures (images 25, 65, 82, 138, and 160) for both the non-gradient-weighted 

(original), and gradient-weighted voting process with wide and thin thresholds, respectively. 

The horizontal axis is grouped similarly to Figures 3-14 and 3-16 
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Table 3-4 The selected samples and their metrics 𝑅_𝑐𝑎𝑙𝑐 and 𝑅_𝑒𝑑𝑔𝑒 together with the total 

number of Prewitt edge pixels. The first two lines in each case are marked by gray color as 

they are the “bad” samples with low values of 𝑅_𝑐𝑎𝑙𝑐, the others have 𝑅_𝑐𝑎𝑙𝑐 larger than 

0.1. The last two columns contain the metrics regarding the size and roundness of the polyp 

 

The fuzziness has a kind of optimal value around 𝜎 = 5 (there the images have the largest 

number of dark red points and darkest red points), but this optimum is not very sharp, the 

neighboring 𝜎 values have very similar results in the domain of 𝜎 = {3,5,7}. Even for those 

images that have no circle found in the ring mask for the classical case, the results can be 

improved by the fuzzy version of the transform. 

Regarding the gradient-weighted voting, and the gradient-based thresholding, the results 

improve compared to the original voting scheme, but the difference is not extremely large. 

Database Image 𝑹_𝒄𝒂𝒍𝒄 𝑹_𝒆𝒅𝒈𝒆 
No. of Edge 

Pixels 
𝒓𝒂𝒗𝒈 𝜹𝒓𝒐𝒖𝒏𝒅𝒏𝒆𝒔𝒔 

CVC-

Clinic 

29 0.004918033 0.013274336 610 38.75 0.358 

201 0.008460237 0.038314176 1182 44.25 0.222 

111 0.247629671 0.733884298 1793 92.75 0.380 

150 0.251902588 1.054140127 1314 52 0.261 

188 0.364678899 0.424 436 66.5 0.173 

217 0.230191827 0.74393531 1199 64.5 0.409 

265 0.260652765 0.871212121 2206 110 0.775 

390 0.297808765 0.641630901 1004 75.75 0.366 

475 0.367805755 0.653354633 1112 106.5 0.757 

480 0.222554145 0.685057471 1339 72.75 0.315 

503 0.310214376 0.976190476 1586 84.75 0.151 

504 0.180173092 0.68358209 1271 56.75 0.201 

CVC-

Colon 

51 0.004398827 0.035087719 1364 27 0.278 

255 0.002773925 0.006779661 721 52.25 0.299 

62 0.242270224 0.801120448 2361 117 0.337 

74 0.218066743 1.457692308 1738 46.25 0.694 

101 0.180649379 1.978520286 4589 71.5 0.711 

128 0.182273052 0.44973545 1399 84 0.483 

149 0.215956424 1.099510604 3121 98 0.334 

220 0.149488927 0.966942149 2348 59.5 0.202 

230 0.318594104 0.641552511 882 74.25 0.442 

283 0.194486983 0.404458599 653 52.25 0.132 

ETIS-

Larib 

24 0.007230077 0.204545455 6224 39.75 0.135 

151 0.0010755 0.012437811 4649 70.75 0.507 

25 0.104344123 0.879186603 7044 153.25 0.549 

65 0.117593198 1.24 7645 125.25 0.249 

82 0.191721133 1.269230769 4131 113.25 0.321 

138 0.102428256 0.649859944 2265 63.5 0.449 

160 0.129833607 1.297423888 8534 151 0.430 
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There is one sample image where the circles found are not around the polyp contour for 

the classical transform: image No. 475. However, this particular polyp has barely visible 

circular contour segments. The results improve even for this case for the gradient-weighted 

voting processes (except for the classical Hough transform in the thin threshold case). Here, we 

have to note that in order to have the transform calculable and also to remove the very large and 

very small circles from the results, the search for the 𝑟 domain was limited between 1% and 

25% of the longer image dimension, so the longer edges of the very elongated polyps, like the 

one on image No. 475 could not be detected. 

From Figure 3-15, for database CVC-Colon, it can be seen that more circles are found 

outside of the polyp contour ring mask, i.e., the little squares in the plots tend towards the yellow 

and greenish part of the color palette. 

The value of the ideal sigma seems to be a little bit higher, around 𝜎 = 7 or 𝜎 = 9, but 

there is much more variation than in the case of the previous database. For some images the 

higher 𝜎 domains give better results, for others the lower 𝜎 domains. 

The thin threshold loses the circles in the ring mask for more images, so it is not a good 

option for this database. 

For the peak percentage 𝑃𝑝 this database behaves similarly to the previous one. 

Again, there is an image that does not show circles in the ring mask for most of the three 

cases: image No. 230, which has a brightly lighted front part, and the polyp is at the background. 

From Figure 3-17 it can be seen that for database ETIS-Larib, the ratio of circles outside 

the ring mask is further increased, i.e., the 𝐴𝑟 became even smaller and the plots became even 

less red. 

Here, the higher 𝜎 values perform slightly better, but this tendency is even less clear than 

in the case of CVC-Colon. 

The 𝑃𝑝 value here is also like the previous cases, 70–80%. 

The thin threshold is worsening the results: even though there are pictures, where the 

number of circles outside the ring mask decreases, there are more images, where the circles 

within the ring mask at the polyp contour disappear. 

For image No. 82, where the polyp contour is very sharp, the polyp’s circle gets lost due 

to the gradient thresholding for the thin threshold. 
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3.4.2 Roundness metrics evaluation 

In order to test how tolerant the classical and fuzzy Hough transforms for the deviation from 

the circle, a test image of five ellipses in an image of size 200 ×  200 pixels was used. The 

larger axis of the ellipse was the same for each of the objects in one image, and the ratio of the 

two axes were 1:1, 5:6, 4:6, 3:6, and 2:6. Three images were used, one with a larger axis of 30 

pixels, one with 60 pixels and one with 90 pixels. The properties of the ellipses are given in 

Table 3-5.  

Table 3-5 Properties of the ellipses of the artificial test images of size 200 × 200 pixels. The 

order of the ellipses is the same as the order in the vertical axis of Figure 3-19, except for the 

ghost circles 

Artificial Image 
Axes 

(Pixels) 
𝒓𝒂𝒗𝒈 𝚫𝒓𝒂𝒅𝒊𝒂𝒍 𝜹𝒓𝒐𝒖𝒏𝒅𝒏𝒆𝒔𝒔 

 

30, 30 15.5 0.6508 0.042 

30, 25 14 1.8902 0.135 

30, 20 13 2.8758 0.221 

30, 15 11.75 4.7322 0.403 

30, 10 10.5 5.0081 0.477 

 

60, 60 30.5 0.7931 0.026 

60, 50 28 2.8902 0.103 

60, 40 25.5 5.2002 0.204 

60, 30 23 7.6023 0.331 

60, 20 20.5 10.0369 0.490 

 

90, 90 45.5 1.6081 0.035 

90, 75 41.5 4.2220 0.102 

90, 60 38 8.4958 0.224 

90, 45 34.25 12.1989 0.356 

90, 30 30.5 15.0686 0.494 

 

In Figure 3-19, the number of circles that were found by the Hough transforms are 

summarized for each of the ellipses separately. As the centers of the ellipses were rather close 

to each other especially on the largest axis case, for lower thresholds one or more unphysical 
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“ghost” circles appeared, typically at the regions between 2 or 3, almost overlapping ellipses. 

The number of these ghost circles are also given under the numbers belonging to the real, 

physical ellipses. 

It can be seen from Figure 3-19 that of the artificial image with objects of the smallest 

size, the classical Hough transform could only detect the precise circle, even the roundness error 

𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = 0.135  was not tolerable. As the fuzziness parameter increased, the peaks 

belonging to more and more elongated ellipses grew above the half of the global maximum of 

the votes, i.e., above 𝑃𝑝 = 50%. Already for 𝜎 = 5 all the ellipses were found in the 𝑃𝑝 = 50% 

case. The corresponding radii were smaller than the larger axis of the ellipse. 

 

Figure 3-19 The number of circles found in the artificial images containing ellipses of large 

axes with size 30, 60, and 90 pixels. In the horizontal axis, the fuzziness parameter 𝜎 is the 

main ordering parameter, and within the cluster of each 𝜎, the peak percentages 𝑃𝑝 increase 

from 50% to 90%. In the vertical direction the three different greater axis sizes are denoted. 

Within each group, the topmost row belongs to the circle (axis ratio 1:1), the next row to the 

axis ratio 5:6, then 4:6, 3:6, 2:6. The last row, separated by a horizontal line, represents the 

non-physical ghost circles 

 

As the size of the ellipses is increased, the limit for finding all the ellipses went higher. 

Additionally, due to the closeness of the ellipses compared to the full width at half maximum 

of the voting matrix, overlaps arose between the individual ellipses and thus, false peaks 

appeared in the accumulator space, either in the area at the center of the image, which is 

circumvented by the ellipses, or at the two most elongated ellipses, that sometimes appeared as 

two twin peaks at the vote maps. 
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For the larger sized ellipse, even the classical Hough transform has a small roundness 

error tolerance: 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = 0.1 is still found, although as two circles. 

If the roundness of the tested colonoscopy images is studied in the last two columns of 

Table 3-4, we can see that extremely elongated polyps also exist with 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 > 0.75, but 

the typical roundness error is between 0.15 and 0.5. This is the reason why this domain was 

selected for the ellipses to be studied in the artificial examples. 

Similar to the case of the artificially generated test images, in the cases of very much 

elongated shapes 𝛿𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 > 0.4, the polyps were very often not found if their sizes were 

large, or found only for very low threshold 𝑃𝑝, like in the cases of ETIS 1st and 4th images, or 

CVC-Clinic 4th. 

Additionally, the smaller polyps with radii around 60 are usually detected, regardless of 

their roundness. 

 

3.4.3 Time evaluation 

To demonstrate the effect of the running time, the ratio between the total running times 

of the gradient-weighted method with wide and thin thresholds to the original Hough transform 

is given in Figure 3-20.  

It can be seen that in the case of most of the images, the wide threshold decreases the 

running time of the Hough transform algorithms by about 50%, and the thin threshold decreases 

the runtime by another roughly 50%, but in some cases, it can go down to lower than 10% of 

the original transform’s running time. For database CVC-Colon, the results are a bit better than 

for the other databases. From the 2nd subplot of Figure 3-20, we can conclude that these results 

are almost size independent, though for a smaller number of edge pixels, the results are usually 

a little bit better. 

It is important to note that the number of pixels to be transformed has an almost linear 

effect on the transformation time, so using Prewitt edge detection is a really important step, as 

it can be seen from Figure 3-6. As the continuity of the edges is not a key point in Hough 

transform, and by giving it up, we can get rid of a lot of weaker edges in the background. This 

step has a double advantage. 
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Figure 3-20 The ratio of the classical and fuzzy Hough transformations’ total runtime for the 

wide and thin gradient thresholds compared to the original, full Hough transform times. The 

two subplots have different horizontal axes: the first subplot just lists the images according to 

their order in Table 3-4, the second subplot’s horizontal axis is the number of pixels to be 

transformed in the original image (i.e., the 5th column of Table 3-4) 
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3.5 Thesis statements 

3.5.1 Thesis 3  

In order to increase the classical Hough transform’s tolerance to deviations from circle, I 

proposed to apply fuzzy Hough transform in the colorectal polyp localization task instead of 

the classical one, and I compared their performance. 

A. As the detection success also depends on the size of the colorectal polyp and its 

roundness, I introduced the roundness error together with the radial displacements 

and the average radius of the polyp to test the different types of Hough transforms’ 

tolerance degree to the deviation from the circle . 

B. Using artificial images, I showed that if the Hough transform’s fuzzyness parameter 

increases, or the local maximum threshold of the transformed image decreases, or the 

size of the object decreases, the tolerance for shape deviations increases as well. 

For classical Hough transform the tolerance increases with increasing the size of the 

object. 

 

3.5.2 Thesis 4 

For colorectal polyp localization purposes, I developed a novel gradient-weighted voting 

approach for classical and fuzzy circular Hough transforms. 

A. As a preprocessing method for Hough transforms, I studied four different edge 

detection algorithms. I developed and applied two evaluation metrics using the 

number of pixels in the polyp contours, and the number of edge pixels detected by the 

algorithms both in the full image and in the environment of the polyp contour for all 

the images of 3 publicly available databases. The Prewitt edge detection algorithm 

proved to be the optimal choice for colorectal polyp localization purposes. 

B. In order to further decrease the number of unnecessary edge points to be processed 

by Hough transforms, I suggested an experimentally validated gradient-based 

thresholding method. I proposed two different gradient threshold domains based on 

the typical gradient domain of the polyp edge points, a wider and a thinner one with 

relative gradient values [0.06, 0.3], and [0.08, 0.2]. The wider gradient threshold was 

proven to give more reliable results. Using this method, the runtime of the algorithms 

decreased by about 50% compared to the full Hough transforms. The thinner threshold 
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further decreased the runtime, but it removed so many valuable edge points which 

made the detection of the polyp impossible for several images. 

C. I introduced a gradient-weighted voting approach to both classical and fuzzy circular 

Hough transforms based on the probability distribution of the polyp contour pixels’ 

gradients of images form 3 publicly available databases. The normalized gradient 

values serve as weights of the edge points in the Hough transformation step. For 8 

grades of fuzzyness and 5 local maximum thresholds of the global maximum of the 

votes, I performed the Hough transforms for both the original and the gradient-

weighted voting processes with wide and thin gradient thresholds. The gradient-

weighted voting mechanism improved the ratio of the circles near the polyp among 

all the circles for the Hough transforms, especially for the fuzzy Hough transform. 

For general practice, I suggest using 80% of the global maximum of the votes as local 

maximum threshold and the application of fuzzy Hough transform with fuzzyness 

parameter 𝜎 =  7 together with the wide gradient-weighted voting process. 
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4. Active contour methods in colonoscopy image segmentation  

4.1 Introduction 

Image segmentation is the process of partitioning an image into multiple meaningful and 

homogeneous regions or objects. It is a fundamental task in various applications of computer 

vision and image processing such as object recognition, tracking, and measurement.  

Medical images segmentation has an exceptionally important role in medical diagnosis 

and classification, treatment planning, and image-guided interventions. It helps with identifying 

the location, size, and shape of several anatomical structures, tumors, lesions, and abnormalities 

in medical images. 

Segmentation methods are generally classified into two main categories: edge-based and 

region-based segmentation methods. Edge-based segmentation methods use the discontinuities 

in the local properties like (brightness, color, or texture) as a criterion for determining the 

boundaries of the regions to be segmented, such as Canny approach (Canny, 1986)  that depends 

on the detection of discontinuities in the brightness to build the connected curves. On the other 

hand, region-based segmentation methods depend on grouping pixels of similar local properties 

to define the boundaries of the areas to be segmented, like region growing (Adams & Bischof, 

1994) and region merging (Brice & Fennema, 1970) approaches. Although these algorithms 

have not been widely successful in more complex tasks due to the absence of a well-defined 

optimization criterion, they have played a crucial role in developing more advanced approaches 

that utilize energy constraints and forces within images to separate the region of interest and 

rely on variational principles to achieve superior results (Ismail & Nagy, 2021). 

Variational methods in image segmentation are mathematical frameworks used to define 

and optimize the boundaries between different regions or objects in an image, and consequently 

find a closed contour that divides the image into subregions. These methods use partial 

differential equations (PDEs) to model the evolution of the image over time, with the aim of 

finding a segmentation that minimizes an energy functional which captures the properties of 

the desired segmentation, such as smoothness and boundary adherence. By minimizing this 

energy functional, an optimal segmentation of the image can be obtained, where each region or 

object is separated by a well-defined boundary. 

By the end of the 80’s, the first variational formulations for image segmentation appeared, 

especially, the Snakes approach by Kass, Witkin, and Terzopoulos in 1988 (Kass, Witkin, & 
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Terzopoulos, 1988) which is an edge-based segmentation method, and the Mumford-Shah 

formulation in 1989 (Mumford & Shah, 1989) which is a region-based segmentation method. 

Researchers' interest in active contour techniques for medical image segmentation has 

grown recently. (Yang & Jiang, 2020) constructed a new level set model based on non-local 

means (NLM) filtering with a new edge-stop criterion. A partially automatic hybrid active 

contour method using a local bias correction function and probability score was proposed in 

(Fang , Pan, Yao, Zhang, & Guo , 2020) for segmentation of 2D ultrasound images with noise, 

blurry boundaries, and intensity heterogeneity. (Bhat & Kumar, 2019) introduced a three phases 

approach to segment the optic disc in retinal fundus images. A localized active contour step 

was used for the 3rd, refined segmentation. 

Segmenting colonoscopy images presents a demanding task in accurately outlining and 

separating colorectal polyps. Numerous complexities contribute to this challenge. To begin 

with, the quality of colonoscopy images exhibits significant variability due to factors like 

motion artifacts, poor illumination, and low contrast. Additionally, the edges of polyps' 

manifest diverse degrees of strength and prominence, attributed to variations in lesions 

morphology and their location on or within the bowel wall. Lastly, the diversity in colon 

anatomy among individuals creates a challenge in developing a segmentation algorithm that 

can effectively detect and segment the colorectal polyps across a wide range of populations. 

Even though deep learning algorithms are often used for colonoscopy polyp 

segmentation, active contour methods have recently shown high efficiency in this field as well. 

In (Georgieva & Petrov, 2017), (Georgieva, Petrov, Nagy, & Sziová, 2018), (Sasmal, Iwahori, 

Bhuyan, & Kasugai, 2018), and (Dutta, Sasmal, Bhuyan, & Iwahori, 2018) researchers used the 

active contour without edges approach, i.e., Chan-Vese segmentation model to build 

segmentation schemes for polyps with not strong enough edges. The proposed methods were 

accompanied with various pre-processing steps and different evaluation metrics. 

This is the reason why the main objective of this chapter is to conduct a systematic and 

comprehensive assessment of the effectiveness of not only the Chan-Vese active contour 

method, but another powerful variational segmentation method, namely, the geodesic active 

contour method for colorectal polyps segmentation purposes (Ismail & Nagy, 2022). Due to the 

complex bowel environment, non-uniform properties of polyps, and variations in their edge 

strength, it is interesting to investigate and compare the feasibility of the geodesic and Chan-

Vese active contour methods application, especially because they operate through two different 

mechanisms. 
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In the following sections, first, I give a mathematical background about the variational 

methods and the level set methods for image segmentation. Then, I introduce the metric used 

in evaluating the performance of the segmentation methods. Finally, I apply and evaluate the 

geodesic and Chan-Vese active contour methods for a carefully selected set of sample images 

with different types of preprocessing steps and initial masks.  

4.2 Variational methods for image segmentation – mathematical background 

4.2.1 Snakes: active contour models 

Active contour, also known as "snake", is one of the first variational approaches for image 

segmentation and it is considered among the most effective models. It was first introduced by 

Kass, Witkin, and Terzopoulos in 1988 (Kass, Witkin, & Terzopoulos, 1988), and since then, 

it has been developed and modified by many researchers (Caselles, Kimmel, & Sapiro, 1997), 

(Chan & Vese, 2000), (Chan & Vese, 2001). The classical snake approach is briefly 

summarized as follows: 

1. Initialization: the active contour is defined by drawing an initial contour or curve that 

roughly outlines the object of interest within the image. 

2. Energy calculation: the snake calculates the energy of the curve, which is the sum of 

internal energy and external energy.  

3. Minimization: the snake iteratively moves the contour to a more optimal place by 

decreasing its energy in each sequential step. This movement is controlled by the forces 

generated by the energy function.  

4. Convergence: the snake continues to move until it reaches convergence, which is when 

the energy of the curve is minimized, and the contour has settled on the boundary of the 

object of interest (Ismail & Nagy, 2021). 

In (Kass, Witkin, & Terzopoulos, 1988), authors proposed to minimize the following 

energy functional which has two parts 

 𝐸(𝐶) = 𝐸𝑒𝑥𝑡(𝐶) + 𝐸𝑛𝑡(𝐶).            (4.1) 

The external and internal energies are formulated by the following equations respectively 
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 𝐸𝑒𝑥𝑡(𝐶) = −∫ |𝛻 𝐼(𝐶(𝑠))|2 𝑑𝑠,
1

0
 (4.2) 

 𝐸𝑖𝑛𝑡(𝐶) = ∫ {
𝛼

2
 |𝐶𝑠(𝑠)|

2 +
𝛽

2
 |𝐶𝑠𝑠(𝑠)|

2}
1

0
  𝑑𝑠,           (4.3) 

where, 𝐼 ∶  Ω ⊂  𝑅2 ⟶ 𝑅   is the input image, and 𝐶: [0,1] ⟶ Ω denotes a parametric curve on 

a grid Ω . The weights 𝛼 ≥  0 and 𝛽 ≥  0 deal with the elasticity and the stiffness of the curve 

respectively. 𝐶𝑠 and 𝐶𝑠𝑠  are the first and second derivative of the curve 𝐶 with respect to its 

parameter 𝑠. 

The previous equations show that the energy state of the contour at any time is controlled 

by both external and internal energies. The external energy is related to the properties of the 

image, like the image gradient, and measures for the computed curve 𝐶 how well it agrees with 

the maximum of the brightness gradient|∇ 𝐼|. On other hand, the internal energy is defined by 

the curve shape characteristics such as: length, smoothness, stiffness, elasticity, curvature, and 

continuity.  

Minimizing the total energy function (4.1) creates curves that are short, smooth, and stiff 

while passing through locations with large gradient values. Gradient descent minimization is 

one of the simplest techniques which can be used to minimize the total energy function. 

Back to the equation (4.1) and substitute the external and internal energies by their values, 

we get 

 𝐸 (𝐶) = −∫ |𝛻 𝐼(𝐶)|2𝑑𝑠 + ∫ {
𝛼

2
 |𝐶𝑠(𝑠)|

2 +
𝛽

2
 |𝐶𝑠𝑠(𝑠)|

2}   𝑑𝑠.
1

0

1

0
            (4.4) 

The corresponding second-order partial differential equation (Euler-Lagrange equation) which 

must be satisfied at the minima of (4.4) is given by 

 𝛼𝐶𝑠𝑠 − 𝛽𝐶𝑠𝑠𝑠𝑠 − 𝛻 𝐸𝑒𝑥𝑡(𝐶) = 0.            (4.5) 

Equation (4.5) represents a force balance equation 

 𝑓𝑖𝑛𝑡(𝐶) + 𝑓𝑒𝑥𝑡(𝐶) = 0,            (4.6) 

where  𝑓𝑖𝑛𝑡  (𝐶) =  α𝐶𝑠𝑠 − 𝛽 𝐶𝑠𝑠𝑠𝑠 is the two-parts internal force, the tension energy α𝐶𝑠𝑠 which 

tends to smooth out the curve and prevent it from having sharp corners, together with the 

bending energy 𝛽 𝐶𝑠𝑠𝑠𝑠 which penalizes large curvatures and helps to maintain the overall shape 

of the curve. 𝑓𝑒𝑥𝑡 (𝐶) = −∇ 𝐸𝑒𝑥𝑡(𝐶) is the external force that pulls the contour toward the 

desired location. 

To solve equation (4.5), 𝐶(𝑠) is treated as a function of temporal and spatial changes, i.e., 

𝐶(𝑠, 𝑡).The solution is obtained at the stable-state solution of the following gradient descent 

equation 
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𝜕𝐶(𝑠,𝑡)

𝜕𝑡
= 𝛼𝐶𝑠𝑠(𝑠, 𝑡) −  𝛽𝐶𝑠𝑠𝑠𝑠(𝑠, 𝑡) + 𝑓𝑒𝑥𝑡(𝐶(𝑠, 𝑡)).          (4.7) 

We can find a numerical solution to (4.7) by discretizing the equation, after that solving the 

discrete system iteratively (Kass, Witkin, & Terzopoulos, 1988). 

The limitations of these models (i.e., snakes, active contour models) are well defined. 

They tend to be sensitive to initial conditions and are typically placed close to the boundaries 

of the objects of interest. Moreover, these models use an explicit parameterization that makes 

them unable to handle significant topological changes. 

 

4.2.2 Mumford-Shah approach 

The Mumford-Shah approach is a popular image segmentation method that was first introduced 

by the mathematicians David Mumford and Jayant Shah in 1989 (Mumford & Shah, 1989). It 

is a variational method that seeks to partition an image into regions or segments based on the 

image's intensity values and the boundaries between these regions. 

Mumford and Shah proposed to compute the segmentation of the input image 𝐼 ∶  Ω ⊂

𝑅2 ⟶ 𝑅 by minimizing a cost functional which has three main parts as follows 

 𝐸(𝑢, 𝐶) =  ∫ (𝐼(𝑥) − 𝑢(𝑥))2𝑑𝑥 +  𝜆
𝛺

∫ |𝛻 𝑢(𝑥)|2𝑑𝑥 + 𝑣|𝐶|
𝛺/𝐶

.            (4.8) 

This relates to the piecewise smooth approximation 𝑢 ∶  Ω ⟶ 𝑅  of the input image 𝐼 , in 

addition to a one-dimensional discontinuity set 𝐶 ⊂ Ω . The three components of equation (4.8) 

have the following definitions: 

• The first part is a quadratic data term which demonstrates that 𝑢  is a convenient 

approximation of the input image 𝐼. 

• The second one is a smoothness term, with weight 𝜆 >  0, confirms that the entire 𝑢 is 

smooth except for the boundary discontinuity set 𝐶. 

• The third one is another regularizer, with weight 𝜈 >  0; it limits the number of pixels 

where the discontinuities are allowed by assuring that the minimal length of 

discontinuity set is|𝐶|. 

To obtain 𝑢(𝑥) which is constant in each of the regions separated by the boundary 𝐶, the 

piecewise-constant Mumford-Shah functional is defined as 

 𝐸(𝑢, 𝐶) = ∫ (𝐼(𝑥) − 𝑢(𝑥))2𝑑𝑥 + 𝑣|𝐶|
𝛺

.           (4.9) 

If we refer to these regions by { Ω1 , … , Ω𝑛 } and the constants by 𝑢𝑖 , we will have the following 

general formula 
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 𝐸({𝑢1, … . , 𝑢𝑛}, 𝐶) = ∑ ∫ (𝐼(𝑥) − 𝑢𝑖)
2𝑑𝑥 + 𝑣|𝐶|.

𝛺
𝑛
𝑖=1  (4.10) 

The last formula is the backbone of many methods used in this field. The Chan-Vese 

model is a prominent example of the most influential methods. The optimization problem 

involved in the Mumford-Shah approach can be solved using a variety of numerical techniques, 

such as gradient descent or level set methods. 

4.3 Level Set Methods for image segmentation– mathematical background 

During the early 1990s, numerous research papers were published on the use of Level Set 

Methods (LSMs) for image segmentation. LSMs concept was first published in 1979 by 

Dervieux and Thomasset (Dervieux & Thomasset, 1979), and subsequently reinvented in 1988 

by Osher and Sethian (Osher & Sethian, 1988). LSMs are important tools for numerical analysis 

and representation of curves, shapes, and surfaces, and their application has become common 

in image segmentation and curves evolution related domains. 

The topological changes of the curve are treated automatically since the temporal 

evolution of a curve 𝐶(𝑡) is implicitly represented using the zero-level set of a function  𝜙(𝑥, 𝑡), 

with a parameterization free formulation, such that 

 𝐶(𝑡) =  {𝑥 ∈ 𝛺| 𝜙(𝑥, 𝑡) = 0}.           (4.11) 

As long as the curve evolves over time, the values of the function 𝜙(𝑥, 𝑡) will also be 

updated at each time and position to create some desired motion for the curve. The fundamental 

question that arises here is: how to evolve the function 𝜙 to mimic the curve evolution. When 

we have a curve evolution, the motion of the curve 𝐶(𝑡) is expressed by 

 
𝑑𝐶

𝑑𝑡
= 𝐹𝑛,           (4.12) 

where 𝐹 is a local speed along with the outer normal 𝑛. Based on the previous speed of the 

curve, we should know how to evolve the function 𝜙  to represent the curve evolution 

successfully. One basic requirement, at any time, is the function 𝜙 must be zero for all points 

of the curve 𝐶 

 𝜙(𝐶(𝑡), 𝑡) = 0   ∀𝑡.        (4.13) 

If the previous equation is fulfilled, then its derivative with respect to time must vanish 

 0 =
𝑑

𝑑𝑡
𝜙(𝐶(𝑡), 𝑡) = 𝛻𝜙 ∙  

𝑑𝐶

𝑑𝑡
+ 

𝜕𝜙 

𝜕𝑡
 .            (4.14) 

We can find the temporal evolution of 𝜙 by substituting each of the equation (4.12) and the 

outer normal ( 𝑛 = −
∇𝜙 

|∇𝜙|
 ) in equation (4.14) as follows 

https://en.wikipedia.org/wiki/Stanley_Osher
https://en.wikipedia.org/wiki/James_Sethian
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𝜕𝜙

𝜕𝑡
= −𝛻𝜙 ∙

𝑑𝐶

𝑑𝑡
= 𝛻𝜙 ∙  𝐹 

𝛻𝜙

|𝛻𝜙|
= 𝐹|𝛻𝜙|.      (4.15) 

As a consequence, for a curve evolution in a normal direction with speed 𝐹, the function 𝜙 at 

the zero level must follow the following level set equation 

 
𝜕𝜙

𝜕𝑡
= 𝐹 |𝛻𝜙|. (4.16) 

As the motion of the function 𝜙 at the boundary of the curve is defined using the level set 

equation, the evolution outside the specific location of the curve boundaries will often take 

place randomly. Typically, one treats the level set function 𝜙(𝑥, 𝑡)  as a signed distance 

function, i.e. 

 𝜙(𝑥, 𝑡) = ±𝑑𝑖𝑠𝑡(𝑥, 𝐶).       (4.17) 

Mostly, 𝜙(𝑥, 𝑡) is positive inside the curve and negative outside it, or vice versa, it is a matter 

of choice. 

One key advantage of applying LSMs in image segmentation is their ability to handle 

complex and evolving boundaries between regions of interest. Unlike traditional segmentation 

techniques that rely on explicit parameterization of the boundaries or intensity thresholds, 

LSMs use implicit representations of the segmentation boundaries via the zero-level set 

function. This allows LSMs to capture topological changes and treat them automatically, handle 

concavities, and merge/split regions naturally without the need for re-initialization or manual 

intervention. 

Using LSMs concept, the geodesic and the Chan-Vese active contours approaches were 

proposed to find a level set representation for each of snake model and Mumford-Shah model, 

respectively. 

 

4.3.1 Geodesic active contours 

In 1997, the geodesic active contours model, derived from "snakes", was first introduced by 

Caselles, Kimmel, and Sapiro (Caselles, Kimmel, & Sapiro, 1997), (Kichenassamy, Kumar, 

Olver, Tannenbaum, & Yezzi, 1995). The edge-based segmentation energy functional for the 

geodesic active contours has the following form 

 𝐸(𝐶(𝑠)) = ∫ 𝑔(|𝛻𝐼(𝐶(𝑠))|)𝑑𝑠.
𝐿(𝐶)

0
           (4.18) 

The geodesic length is controlled by the edge strength measurement function or the 

stopping function 𝑔(𝐼). The basic aim of 𝑔(𝐼) is to limit the contour evolution and stop it when 

the contour gets close enough to the desired edge. It is defined as follows 
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 𝑔(𝐼) =
1

1+|𝛻 𝐼|𝑝
 ,            (4.19) 

where 𝐼 is the smoothed image of the considered image 𝐼 and 𝑝 = 1 or 2.  It is obvious that the 

value of the function 𝑔(𝐼) will decrease when we have high values of the gradient. The gradient 

descent of the curve 𝐶 is given by the following expression 

 
𝜕𝐶(𝑡)

𝜕𝑡
= 𝑔(𝐼)𝜅 �⃗⃗� − (𝛻𝑔 ∙  �⃗⃗� )𝒩,⃗⃗⃗⃗  ⃗            (4.20) 

where κ = 𝑑𝑖𝑣 (
∇𝜙

|∇𝜙|
) is the Euclidean curvature and �⃗⃗�  is the unit inward normal. Representing 

the previous equation using the level set equation will be as follows 

 
𝜕𝜙

𝜕𝑡
= |𝛻𝜙|𝑑𝑖𝑣 (𝑔(𝐼)

𝛻𝜙

|𝛻𝜙|
) = 𝑔(𝐼)|𝛻𝜙| 𝑑𝑖𝑣 (

𝛻𝜙

|𝛻𝜙|
) +  𝛻𝑔(𝐼) ∙ 𝛻𝜙,      (4.21) 

where 𝜙 is a function representing the curve 𝐶 as a zero-level set. 

Although the geodesic active contours approach has been successful in certain areas, it 

has limited applicability in other specific scenarios. This is because it depends on image 

gradient information and may not be the best choice for processing images that are noisy or 

contain objects with poorly defined edges. 

 

4.3.2 Chan-Vese active contours 

An alternative approach to the edge-based methods, Chan and Vese proposed a two-phase 

region-based segmentation method known as active contour without edges (Chan & Vese, 

2000), (Chan & Vese, 2001). This approach reformulates the variational principle of the 

piecewise constant Mumford-Shah model using the level set method. Chan and Vese introduced 

the following basic energy functional  

𝐹(𝑐1, 𝑐2, 𝐶) = 𝜇 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝜈 ∙  𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)) 

+𝜆1 ∫ |𝐼(𝑥, 𝑦)   − 𝑐1|
2𝑑𝑥

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)
 𝑑𝑦 + 𝜆2 ∫ |𝐼(𝑥, 𝑦) − 𝑐2|

2𝑑𝑥 𝑑𝑦,
𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

                       (4.22) 

where 𝐶 is the curve that splits the image 𝐼 into two regions of nearly constant intensity, the 

constants 𝑐1 and 𝑐2  are the averages of 𝐼 inside and outside the contour 𝐶  respectively, and 

(  𝜇 ≥ 0;  𝜈 ≥ 0; 𝜆1, 𝜆2 > 0 ) are fixed parameters. The default values most often used are: 

𝜆1 = 𝜆2 = 1 and 𝜈 = 0. Then, the minimization problem is presented as 

 𝑖𝑛𝑓𝑐1,𝑐2,𝐶   𝐹(𝑐1, 𝑐2, 𝐶).                   (4.23) 

Equation (4.22) is a special case of the piecewise-constant Mumford Shah equation (4.10) for 

two phases. Chan and Vese worked on finding the best approximation 𝑢 of the image 𝐼, as a 

function taking only two values 
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 𝑢 = {
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐼) 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐼) 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶
 . (4.24) 

The authors reformulated (4.22) using the level set method to implicitly represent the 

contour 𝐶 by the zero-level set in terms of a  𝜙 function as following 

 {

𝐶 = 𝜕𝜔 = {(𝑥, 𝑦) ∈ 𝛺: 𝜙(𝑥, 𝑦) = 0}

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶) = 𝜔 = {(𝑥, 𝑦) ∈ 𝛺: 𝜙(𝑥, 𝑦) > 0}

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶) = 𝛺\�̅� = {(𝑥, 𝑦) ∈ 𝛺: 𝜙(𝑥, 𝑦) < 0}
.           (4.25) 

With the evolving curve 𝐶 ⊂  Ω, as the boundary of an open subset 𝜔 ⊂ Ω , 𝜔 refers to the 

region inside the curve 𝐶, and 𝛺\ω̅ refers to the region outside the curve 𝐶. 

The Heaviside step function was their choice, and since it is not a differentiable function, 

so they assumed that it is slightly smoothed and by this way they were able to use the gradient 

descent to find the local minimization of the Chan Vese energy functional. Thus, its derivative 

will be a smoothed Dirac delta function. Generally, the Heaviside and Dirac delta functions are 

defined as follows 

 𝐻(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 0,
0, 𝑖𝑓 𝑧 < 0,

      𝛿0(𝑧) =
𝑑

𝑑𝑧
𝐻(𝑧). (4.26) 

After that, they redefined the energy functional using  𝐻(𝜙) by the following way 

𝐹(𝑐1, 𝑐2, 𝜙) = 𝜇 ∫𝛿(𝜙(𝑥, 𝑦)) |∇𝜙(𝑥, 𝑦)|𝑑𝑥 𝑑𝑦
Ω

 

+𝜈 ∫𝐻(𝜙(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦
Ω

 

+𝜆1 ∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2 𝐻(𝜙(𝑥, 𝑦))𝑑𝑥 𝑑𝑦

Ω

 

 +𝜆2 ∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2 (1 − 𝐻(𝜙(𝑥, 𝑦)))𝑑𝑥 𝑑𝑦

𝛺
. (4.27) 

The finial segmentation curve could be obtained from the minimizer of the energy functional 

(4.27) with respect to 𝜙 .The standard Euler-Lagrange calculus is used to compute the gradient 

descent equation which defining the initial contour as the following 

𝜕𝜙

𝜕𝑡
= 𝛿 (𝜙) [𝜇 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
) − 𝜈 − 𝜆1 (𝐼 − 𝑐1)

2 + 𝜆2 (𝐼 − 𝑐2)
2] = 0 in Ω, 

 

                                
𝛿𝜀(𝜙)

|∇𝜙|
  
𝜕𝜙

𝜕�⃗� 
= 0 on 𝜕𝛺,                                                                            (4.28) 

where �⃗�  denotes the exterior normal to the boundary, and 𝜕𝜙/𝜕�⃗�  denotes the normal divertive 

of 𝜙 at the boundary.  
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4.4 Practical implementation and results 

4.4.1 Evaluation criteria 

Practically, random image samples from colonoscopy images databases ETIS-Larib, (Silva, 

Histace, Romain, Dray, & Granado, 2014), CVC-Colon (Bernal, Sanchez, & Vilariño, 2012), 

and CVC-Clinic (Bernal J. , et al., 2015) were tested. Each of the calculations started from a 

rough initial mask – rectangular or circular–, based on the ground truth mask of the examined 

image. The initial mask can be also the output of any of the existing polyp localization methods 

(Silva, Histace, Romain, Dray, & Granado, 2014), (Nagy, Lilik, & Kóczy, 2017), (Yuji, et al., 

2015), (Bernal J. ,et al., 2017). 

To evaluate the results of the active contour segmentation methods, the Sørensen–Dice 

Similarity Coefficient was selected as a performance measurement metric. The Sørensen–Dice 

index (SDI) is a widely applied metric for quantitatively validating of medical image 

segmentation algorithms. Moreover, it directly compares between the resulted segmented area 

and the mask provided in the database, i.e., the so-called ground-truth mask (Dutta, Sasmal, 

Bhuyan, & Iwahori, 2018), (Taha & Hanbury , 2015), (Carass, Roy, Gherman, & et al., 2020). 

It is mathematically computed as 

 𝐷𝑖𝑐𝑒 (𝐴, 𝐵) =
2×|𝐴∩𝐵|

|𝐴|+|𝐵|
,           (4.29) 

where 𝐴 and 𝐵 are the two sets being compared, |𝐴|and |𝐵| are the number of elements in 𝐴 

and 𝐵 respectively, and|𝐴 + 𝐵| is the number of elements that are common to both 𝐴 and 𝐵.  

The SDI ranges from 0  to 1 , with 0  indicating no overlap between the sets and 1 

indicating complete overlap or similarity. It is a symmetric measure, meaning that the SDI 

between set 𝐴 and set 𝐵 is the same as the SDI between set 𝐵 and set 𝐴. 

For this study,  𝐴  represents the active contour output binary segmented area and 𝐵 

represents the ground-truth mask. 

 

4.4.2 Reference case  

As a reference case, geodesic and Chan-Vese active contour methods were tested on the 2D 

grayscale version of the colonoscopy original images and their original masks. Since the initial 

mask plays a critical role in the contour evolution and the accuracy of the segmentation process, 

an initial mask was generated based on the corresponding given mask in the related database. 

It is a rectangle that encompasses the polyp area, to simulate the output of a previous, rough 



R. Ismail  Detection, localization, and segmentation of colorectal polyps 

in colonoscopy images by computational intelligence methods 

84 

polyp localization method. Moreover, a solid initial mask will provide a clear definition of the 

region of interest and help the approaches converge to the desired solution. 

In MATLAB, the smoothness factor and contraction bias parameters are two important 

parameters used in the active contour function to modify the behavior of the active contour 

during the segmentation process. By adjusting the values of these parameters, the user can 

control the trade-off between contour smoothness and flexibility as well as the degree of 

expansion or contraction of the contour, which improves the accuracy and robustness of the 

segmentation results. 

The default parameters utilized in the active contours' methods provided by MATLAB 

were selected. The smoothness factor is 1 and 0, and the contraction bias is 0.3 and 0 for the 

geodesic and the Chan–Vese active contours respectively, and the number of iterations is 100 

for both. Certain samples were selected and analyzed as representatives of the broader sample 

pool, and Table 4-1 lists the Sørensen–Dice Coefficient for these images from the three 

databases. 

Table 4-1 Sørensen–Dice Coefficient for the image samples in the reference case 

 

Database 
Image  

Number 
Geodesic Chan–Vese 

ETIS-Larib 

Polyp DB 

49 0.8688 0.6771 

65 0.8922 0.7111 

135 0.8659 0.3950 

185 0.8702 0.6350 

CVC-Colon 

Polyp DB 

28 0.9225 0.7442 

67 0.9097 0.6016 

150 0.8832 0.7116 

202 0.9235 0.4318 

CVC-Clinic 

Polyp DB 

127 0.8865 0.5657 

151 0.9330 0.6524 

302 0.8583 0.6073 

405 0.8968 0.6512 
 

The numerical results of the Sørensen–Dice Coefficient showed that the geodesic method 

performs better than the Chan–Vese method using the first default settings. Moreover, the 

geodesic initial mask and thus the resulting segmented area showed a tendency to shrink or 

contract towards the polyp, while for the Chan–Vese, it tended to grow or expand outwards, 

away from the polyp. It is also worth mentioning that the geodesic segmented area has an almost 
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irregular rectangular shape, thus the contour fails to mimic the exact smooth and elliptical polyp 

shape.  

The different behaviors of the geodesic and Chan-Vese initial masks in the segmentation 

results may be attributed to their underlying algorithms and energy minimization strategies. 

Geodesic active contours rely on an initial seed point and minimize an energy functional 

towards the object boundaries, resulting in the mask shrinking towards the polyp. On the other 

hand, Chan-Vese active contours partition the image into object and background regions based 

on their intensity values and seek to find the optimal contour that separates these regions, 

causing the mask to expand away from the polyp searching for this contour. 

 Figure 4-1 represents the reference case segmentation results of the grayscale version of 

image (28) in database CVC-ColonDB (Bernal, Sanchez, & Vilariño, 2012). 

To enhance the overall segmentation accuracy, a series of main pre-processing steps were 

suggested and their effect in comparison with the reference case results was studied. 

 

a)  b)  c)  

d)  e)  

Figure 4-1 The reference case segmentation results of the grayscale version of image (28) in 

database CVC-ColonDB (Bernal, Sanchez, & Vilariño, 2012). (a) The original image, (b) the 

given database mask, (c) the generated initial mask, (d) the geodesic segmented area, and (e) 

the Chan–Vese segmented area 

4.4.3 Pre-processing phase  

The following image pre-processing steps were carried out on all the colour channels to make 

the images more segmentable (Solecki, Nagy, & Sziová, 2020). First, the black frames of the 

images were cut off to reduce unnecessary information, then the reflections were smoothened 

into their environment together with a histogram stretching the following way. As all the images 
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contained remainings of the frames at the corners, there was a large black peak at the black side 

of the image histogram; these pixels were collected into a black mask. As all the pictures 

contained bright whitish reflections, there was a peak, lower in magnitude, but much broader 

in width at the other, white side of the histogram, too. The pixels with this intensity were 

collected into a white mask. The middle part of the image histogram that was the useful 

information part, was stretched to the 0 − 255 intensity domain linearly.  

Two steps were executed on the reflection pixels to smoothen them into their 

environment. First, the white or reflection mask was extended to its neighbouring pixels, if the 

average of the unmasked environment of the given pixel was much smaller than the actual pixel 

value. Second, the pixels in the reflection domains (inside the extended white mask) were 

substituted by the average of their unmasked environment (only those pixels counted into the 

environment, where neither the white, nor the black masks were present).  

As a last step a large-scale average of the image, i.e., the background, was subtracted to 

provide a more even density distribution, where only the patterns that are of the same size-scale 

of the expected polyps are visible, the larger tendencies are washed out. This step of course was 

together with a histogram stretching. Figure 4-2 demonstrates the pre-processing steps for 

image (127) in database CVC-ClinicDB (Bernal J. , et al., 2015).  

 

a)  b)  

 c)  d)  

Figure 4-2 The pre-processing steps of image (127) in database CVC-ClinicDB (Bernal J. , et 

al., 2015). (a) The original image, (b) the image with the frame cut-off and histograms 

stretched, (c) the removed reflection image, and (d) the background subtracted image 
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4.4.4 Post pre-processing case  

Since the characteristics of the colonoscopy images databases are not uniform, and the 

applicability of the segmentation methods varies according to the used pictures features, there 

is a need to investigate whether the performance of the segmentation process is affected by the 

application of the pre-filtering techniques. Along with the background-subtracted image, 

various pre-filtering methods' outputs were examined and tested as input images for the active 

contour methods. 

When choosing filtering techniques for colonoscopy pictures, various factors must be 

considered. As these images are often noisy, reducing noise components can lead to more 

accurate segmentation results. Linear filters, such as mean or Gaussian filters, can be efficient 

options for this purpose. In some cases, it may be necessary to reduce noise while preserving 

edges, which is particularly useful for the edge-based segmentation methods, like the geodesic 

method. The median filter is less sensitive to outliers than the mean filter and can remove the 

outliers' pixels without reducing the strength of the image edges, as well as the Wiener filter 

can reduce noise levels while maintaining edges. While certain denoising filters may result in 

blurred images with smoother edges, which can be beneficial when implementing the Chan-

Vese method as it looks for a smooth contour between objects of varying intensity to start the 

segmentation process with. 

The first set of selected filters consisted of the basic statistical filters: the mean, median, 

and standard deviation filters. Furthermore, the difference between the mean and median was 

also evaluated, as it provides some detailed information about rapidly changing parts of the 

image (Ismail & Nagy, 2021). 

As gradients are the basis of many edge detecting methods and their values are higher 

around large variations, i.e., around edges, thus the second suggested group of filters was the 

image gradients. The gradient magnitude, the gradient direction, and the 𝑥  and 𝑦  direction 

components of the gradient were implemented. 

The third group of filters was based on the Rényi entropies (Rényi, 1960) of the image. 

The structural entropy and the spatial filling factor (mathematically explained in Subsection 

2.2.2 in Equations (2.10) to (2.12)) were calculated as suggested filtration techniques as well. 

The filter size  for the three filters groups previously listed was 5 × 5. 

The Gaussian filter with a standard deviation of 0.5 , and the Wiener filter with a 

neighborhood size 3 × 3 were also applied as the last two filtering choices.  
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Practically, the 2D grayscale version of the background-subtracted image and its fourteen 

filtered images were evaluated as different input pictures for the geodesic and Chan-Vese active 

contour methods. We kept using the rectangular initial mask with the same active contour 

default settings in this case. 

Compared to the reference case, the results confirmed that using background-subtracted 

versions instead of the grayscale versions of the original colonoscopy images was highly 

beneficial and improved the segmentation results in 75% of the samples using the Chan-Vese 

method (9 out of 12). Whereas the geodesic method results showed that only 42% of the 

samples (5 out of 12) were positively affected. The Sørensen-Dice Coefficient values for the 

remaining image samples (3 out of 12 for the Chan-Vese method, and 7 out of 12 for the 

geodesic method) showed only a slight decrease compared to the reference case results. In 

certain samples, the pre-processing phase generated images with smoother edges, which had a 

negative impact on the edge-based geodesic method's performance. 

The former results are clearly illustrated by comparing the Sørensen–Dice Coefficient 

values of using the background-subtracted image and the rectangular initial mask for each tested 

sample in Tables 4-2, 4-3, and 4-4 with the corresponded reference case result (the tables are 

listed in the forthcoming part, in Subsection 4.4.5 for better comparibility of the results). The 

highlighted value indicates the value that improved after the pre-processing phase and using the 

background-subtracted version as an input for the active contour methods. 

The outcomes of the pre-filtering methods demonstrated that both the geodesic and Chan-

Vese active contour methods had superior performance with the mean, median, Gaussian, and 

Wiener filters across almost all samples. Moreover, the Chan-Vese segmented area matched the 

elliptical polyp borders very well. Whereas the geodesic resulted area was still far from the 

ideal requested shape. 

Despite the nearly identical performance of the geodesic method with almost all filters, 

for our next investigations, we will keep on just the mean, median, Gaussian, and Wiener filters, 

because the best segmentation results were obtained using these filters for both the geodesic 

and Chan-Vese methods. 

Figures 4-3 and 4-4 give the resulting masked images for the background-subtracted 

image (65) in database ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014) 

using the geodesic and Chan-Vese methods respectively. 
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Figure 4-3 The masks resulting from the geodesic method for one input image with different 

prefiltering methods. The original input image is the background subtracted image (65) in 

database ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014); it appears 

in the top left, in position 1), next, in position 2) is the zoomed version of the original, 

unfiltered image for better visualization (indicated in image 1) by a black rectangle), and 3) 

the ground truth mask belonging to the zoomed partition; the gray rectangle denotes the 

initial mask boundaries we used in the calculation.  The order of appearance for the geodesic 

masks: 4) original, unfiltered image, 5-8) Gradient filtered images (magnitude, direction, 𝑥 

and 𝑦 component), 9) mean filtered image, 10) standard deviation filtered image, 11) median 

filtered image, 12) difference of mean and median filtered image, 13) 𝑆1, 14) 𝑆2, 15) 𝑆𝑠𝑡𝑟 

𝑆𝑠𝑡𝑟, 16) 𝑙𝑛𝑞 filtered images, 17) Gaussian filtered image, and 18) Wiener filtered image 
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Figure 4-4 The masks resulting from the Chan-Vese method for one input image with different 

prefiltering methods. The original input image is the background subtracted image (65) in 

database ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014); it appears 

in the top left, in position 1), next, in position 2) is the zoomed version of the original, 

unfiltered image for better visualization (indicated in image 1) by a black rectangle), and 3) 

the ground truth mask belonging to the zoomed partition; the gray rectangle denotes the 

initial mask boundaries we used in the calculation.  The order of appearance for the geodesic 

masks: 4) original, unfiltered image, 5-8) Gradient filtered images (magnitude, direction, 𝑥 

and 𝑦 component), 9) mean filtered image, 10) standard deviation filtered image, 11) median 

filtered image, 12) difference of mean and median filtered image, 13) 𝑆1, 14) 𝑆2, 15) 𝑆𝑠𝑡𝑟 

𝑆𝑠𝑡𝑟, 16) 𝑙𝑛𝑞 filtered images, 17) Gaussian filtered image, and 18) Wiener filtered image 

 

4.4.5 Circular initial mask case  

To examine the impact of the initial mask shape on the performance of geodesic and Chan-Vese 

methods, a circular initial mask as an alternative to the previously used rectangular initial mask 

was proposed to be utilized. This investigation was motivated by the observation that certain 

polyp localization algorithms, such as those based on Hough transforms, provide a circle as the 

initial estimate of the polyp's location. 
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For this goal, three different circular initial masks were assessed. The centers of the 

circular initial masks were similar to the center of the previously used rectangular initial mask, 

but the diameters were different. The width, length, and diameter of the rectangular mask were 

considered as potential diameters for three circular initial masks. 

According to the analysis, the most reasonable results were achieved using a circular 

initial mask with a diameter equal to the length of the original rectangular mask. Therefore, 

only the results obtained using this particular circular mask will be presented and discussed.  

The values of Sørensen–Dice similarity coefficient for geodesic and Chan-Vese methods 

using both rectangular and circular initial masks and default parameters for the five selected 

input images were compared. The comparison results are illustrated as charts in Figure 4-5, and 

numerically listed in the Tables 4-2, 4-3, and 4-4. 

Generally speaking and based on the geodesic comparison results, it was found that the 

rectangular initial mask yielded higher similarity coefficients in 91.67% of the cases, whereas 

the circular initial mask only worked better in only 8.33% of the cases. Furthermore, the Chan-

Vese results showed that the rectangular initial mask was better suited for approximately 50% 

of the total similarity coefficients, while the circular initial mask was more appropriate for the 

remaining 50%. Overall, the Chan-Vese method demonstrated lower sensitivity to the shape of 

the initial mask than the geodesic method, as previously noted. 

To further qualify how much lower the sensitivity of the Chan-Vese method is to the 

shape of the initial mask compared to the geodesic method and whether or not this difference 

is significant, the relative difference between rectangular and circular initial masks’ Sørensen-

Dice indices results was calculated. It is defined the following way 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝐷𝑖𝑐𝑒𝑟𝑒𝑐𝑡−𝐷𝑖𝑐𝑒𝑐𝑖𝑟𝑐

(
𝐷𝑖𝑐𝑒𝑟𝑒𝑐𝑡+𝐷𝑖𝑐𝑒𝑐𝑖𝑟𝑐

2
)
.           (4.30) 

The Sørensen–Dice index for geodesic and Chan-Vese methods using both rectangular 

and circular initial masks of the 12 sample images with all the 5 selected preprocessing methods 

was plotted in Figure 4-6 in two different ways, as bars in the 1st plot and continuous lines in 

the 2nd one. As the trendlines plotted with continuous lines are more visible than the bar plots, 

they were used to formulate the final conclusions. Also the difference between the rectangular 

and the circular initial masks (relative to the average of their Sørensen-Dice indices) was plotted 

in Figure 4-7. 
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Figure 4-5 Sørensen–Dice similarity coefficient comparison results for geodesic and Chan-

Vese methods using both rectangular and circular initial masks for the image samples of the 

three studied databases ( (Silva, Histace, Romain, Dray, & Granado, 2014); (Bernal, 

Sanchez, & Vilariño, 2012); (Bernal J. , et al., 2015)). The rectangular and circular masks 

are indicated by (Rec) and (Cir) respectively. The order of the columns’ colors is in the same 

order as in the bottom of the figures: background subtracted, mean, median, Gaussian and 

Wiener filtered images 

The following observations can be formulated based on both Figure 4-6 and Figure 4-7 

a) The 5 preprocessing methods that are used for one image give almost the same 

results (the lines within the vertical gridlines are almost always close to horizontal 

in the 2nd plot of Figure 4-6). 

b) The Geodesic rectangular (the blue line in the 2nd plot of Figure 4-6) is the best 

almost always. Wherever the Chan-Vese method is better, all 4 results are about 

the same (Figure 4-7 has small columns in E-L 135 and Col 150). 

c) The Chan-Vese is less sensitive to the shape of the initial mask, i.e., the yellow 

and gray lines run much closer to each other in the 2nd plot of Figure 4-6, and the 

orange columns are usually smaller in Figure 4-7. 
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Table 4-2 Sørensen–Dice Coefficient of the post pre-processing case for the image samples in 

database ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014) using both 

rectangular and circular initial masks 

Image 

Number 

Active 

Contour 

Input  

Image 

Geodesic 

Rectangular 

Geodesic 

Circular 

Chan–Vese 

Rectangular 

Chan–

Vese 

Circular 

49 

Background 

subtracted 
0.8743 0.7879 0.6787 0.7137 

Mean 0.8763 0.7910 0.6661 0.6662 

Median 0.8773 0.7897 0.6678 0.6655 

Gaussian 0.8745 0.7892 0.6761 0.7129 

Wiener 0.8755 0.7902 0.6737 0.7122 

65 

Background 

subtracted 
0.8937 0.8102 0.8763 0.8047 

Mean 0.8921 0.8121 0.8736 0.8028 

Median 0.8908 0.8079 0.8760 0.8074 

Gaussian 0.8929 0.8111 0.8755 0.8017 

Wiener 0.8927 0.8107 0.8747 0.8020 

135 

Background 

subtracted 
0.8610 0.8148 0.8969 0.9111 

Mean 0.8669 0.8290 0.9016 0.9098 

Median 0.8660 0.8208 0.9080 0.9140 

Gaussian 0.8618 0.8212 0.8923 0.9044 

Wiener 0.8630 0.8247 0.8890 0.9001 

185 

Background 

subtracted 
0.8724 0.8574 0.7167 0.7786 

Mean 0.8793 0.8547 0.7184 0.6730 

Median 0.8768 0.8542 0.7190 0.6791 

Gaussian 0.8730 0.8551 0.7155 0.7763 

Wiener 0.8735 0.8559 0.7137 0.7763 
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Table 4-3 Sørensen–Dice Coefficient of the post pre-processing case for the image samples in 

database CVC-ColonDB (Bernal, Sanchez, & Vilariño, 2012) using both rectangular and 

circular initial masks 

Image 

Number 

Active 

Contour 

Input  

Image 

Geodesic 

Rectangular 

Geodesic 

Circular 

Chan–Vese 

Rectangular 

Chan–

Vese 

Circular 

28 

Background 

subtracted 
0.9080 0.8867 0.8503 0.8702 

Mean 0.9117 0.8848 0.8527 0.8644 

Median 0.9122 0.8845 0.8562 0.8702 

Gaussian 0.9084 0.8867 0.8470 0.8641 

Wiener 0.9090 0.8870 0.8482 0.8651 

67 

Background 

subtracted 
0.8960 0.9149 0.7172 0.7943 

Mean 0.8863 0.9053 0.7674 0.7893 

Median 0.8907 0.9049 0.7694 0.7938 

Gaussian 0.8941 0.9144 0.7162 0.7867 

Wiener 0.8925 0.9133 0.7157 0.7845 

150 

Background 

subtracted 
0.8772 0.8572 0.9140 0.8948 

Mean 0.8823 0.8605 0.8998 0.8861 

Median 0.8808 0.8589 0.9146 0.8981 

Gaussian 0.8808 0.8572 0.9091 0.8916 

Wiener 0.8764 0.8565 0.9122 0.8940 

202 

Background 

subtracted 
0.9266 0.7665 0.7447 0.7345 

Mean 0.9314 0.7567 0.7257 0.7252 

Median 0.9287 0.7666 0.7272 0.7279 

Gaussian 0.9274 0.7632 0.7242 0.7150 

Wiener 0.9283 0.7590 0.7118 0.7072 
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Table 4-4 Sørensen–Dice Coefficient of the post pre-processing case for the image samples in 

database CVC-ClinicDB (Bernal J. , et al., 2015) using both rectangular and circular initial 

masks 

Image 

Number 

Active 

Contour 

Input  

Image 

Geodesic 

Rectangular 

Geodesic 

Circular 

Chan–Vese 

Rectangular 

Chan–

Vese 

Circular 

127 

Background 

subtracted 
0.8769 0.7024 0.7541 0.7461 

Mean 0.8537 0.6510 0.7576 0.7558 

Median 0.8626 0.7039 0.7684 0.7646 

Gaussian 0.8757 0.7094 0.7493 0.7476 

Wiener 0.8770 0.7275 0.7492 0.7464 

151 

Background 

subtracted 
0.9246 0.7117 0.6275 0.6496 

Mean 0.9198 0.6762 0.6473 0.6658 

Median 0.9185 0.6814 0.6514 0.6589 

Gaussian 0.9234 0.7152 0.6262 0.6465 

Wiener 0.9217 0.7055 0.6225 0.6455 

302 

Background 

subtracted 
0.8317 0.6906 0.5705 0.5327 

Mean 0.8375 0.6970 0.5921 0.5723 

Median 0.8383 0.6939 0.5953 0.5739 

Gaussian 0.8391 0.6899 0.5641 0.5247 

Wiener 0.8383 0.6931 0.5654 0.5335 

405 

Background 

subtracted 
0.9032 0.8522 0.6065 0.3941 

Mean 0.8990 0.8531 0.6330 0.6621 

Median 0.8998 0.8514 0.6342 0.6603 

Gaussian 0.9026 0.8526 0.5964 0.3891 

Wiener 0.8937 0.8482 0.6036 0.3832 
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Figure 4-6 Sørensen–Dice coefficients for geodesic and Chan-Vese methods using both 

rectangular and circular initial masks of the 12 sample images with all the 5 selected 

preprocessing methods 

 

Figure 4-7 The reletive difference of the Sørensen–Dice coefficients for geodesic and Chan-

Vese methods using both rectangular and circular initial masks of the 12 sample images with 

all the 5 selected preprocessing methods 

 

4.4.6 Modified rectangular initial mask and tuned parameters case 

In this case, the effect of the rectangular initial mask size with the tuned parameters was verified 

based on many experiments. Two different masks and different parameters were chosen to 

initialize the geodesic and Chan-Vese methods. The geodesic method was initialized using the 

same rectangular mask that encompasses the polyp area, while the Chan-Vese method was 

initialized using a decreased size rectangular mask located within the polyp area. 
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For the active contour function parameters, the smoothness factor plays a critical role in 

determining the smoothness of the resulting contour. By increasing the smoothness factor, the 

contour becomes smoother, reducing its susceptibility to noise and local variations in the image. 

Conversely, decreasing the smoothness factor enhances the contour's flexibility, allowing it to 

accurately fit to complex shapes' details and contours within the image. In other words, the 

smoothness factor involves a trade-off between generating a smoother segmented contour with 

a higher value vs. fitting finer details of the input image more precisely with a lower smoothness 

value. 

The contraction bias parameter controls the expansion or contraction of the resulting 

contour. The contour contracts and fits tightly around the object boundaries in the image when 

the contraction bias parameter has a positive value. In contrast, if the contraction bias parameter 

has a negative value, the contour will extend and expand to cover more area inside the object 

boundaries. 

The previously discussed two parameters were empirically selected. It was found that the 

same default parameters, i.e., a smoothness factor of 1 and a contraction bias of 0.3, continued 

to work well with the geodesic method. Whereas, the Chan-Vese method performed better with 

a smoothness factor equal to 1 and a contraction bias equal to −0.5. The performance of both 

methods was evaluated using the modified rectangular initial masks and different tuned 

parameters for 100, 200, and 300 iterations.  

Figures 4-8, 4-9 and 4-10 illustrate the overall results of this case. Table 4-5 gives the 

numerical results for the image (151) of database CVC-ClinicDB (Bernal J. , et al., 2015), as 

an example. 

In the case of 100 iterations and compared to the results of the post pre-processing case 

with rectangular initial mask, the results of the geodesic method remained unchanged in this 

sub-case, as the same rectangular initial mask and default parameters were used. For the Chan-

Vese method, approximately 88.34% of the total similarity coefficients were enhanced with 

the modified rectangular initial mask and tuned parameters case. 

For comparison, Figure 4-11 shows the Chan–Vese segmentation results of the image 

(135) in database ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014), in 

both cases, the post pre-processing with rectangular initial mask, and the modified rectangular 

initial mask and tuned parameters with 100 iterations.  
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Figure 4-8 Sørensen–Dice Coefficient of the modified rectangular initial mask and tuned 

parameters case for the image samples in database ETIS-Larib Polyp DB (Silva, Histace, 

Romain, Dray, & Granado, 2014), with 100, 200, and 300 iterations. The order of the 

columns’ colors is in the same order as in the bottom of the figures: background subtracted, 

mean, median, Gaussian and Wiener filtered images 

 

 

   

   

Figure 4-9 Sørensen–Dice Coefficient of the modified rectangular initial mask and tuned 

parameters case for the image samples in database CVC-ColonDB (Bernal, Sanchez, & 

Vilariño, 2012), with 100, 200, and 300 iterations. The order of the columns’ colors is in the 

same order as in the bottom of the figures: background subtracted, mean, median, Gaussian 

and Wiener filtered images 
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Figure 4-10 Sørensen–Dice Coefficient of the modified rectangular initial mask and tuned 

parameters case for the image samples in database CVC-ClinicDB (Bernal J. , et al., 2015), 

with 100, 200, and 300 iterations. The order of the columns’ colors is in the same order as in 

the bottom of the figures: background subtracted, mean, median, Gaussian and Wiener 

filtered images 

 

Table 4-5 Numerical values for Sørensen–Dice Coefficient of the modified rectangular initial 

mask and tuned parameters case for the image (151) in database CVC-ClinicDB (Bernal J. , 

et al., 2015), with 100, 200, and 300 iterations. The highlighted values refer to the Chan–Vese 

improved values compared with the post pre-processing results given in the Table 4-4. 

Image 

Number 

Active 

Contour 

Input  

Image 

Geodesic 

100 

Geodesic 

200 

Geodesic 

300 

Chan–

Vese 

100 

Chan–

Vese 

200 

Chan–

Vese 

300 

151 

Background 

subtracted 
0.9246 0.9100 0.8674 0.7552 0.6810 0.6496 

Mean 0.9198 0.9127 0.8867 0.7338 0.7412 0.6792 

Median 0.9185 0.9154 0.8994 0.7332 0.7400 0.6778 

Gaussian 0.9234 0.9007 0.8473 0.7403 0.6753 0.6454 

Wiener 0.9217 0.9083 0.8554 0.7249 0.6607 0.6370 

 

The results of the segmentation methods with higher number of iterations (200 and 300) 

varied according to the used pictures and to the different non-uniform characteristics of the 

databases. One of the most significant reasons for the inconsistent tendency of the results was 

the difference in the studied image size across the various databases, as well as the variation in 

polyp size compared to its image size. Additional factors such as the polyp shape (elliptical, 

circular, irregular), polyp viewpoint (top view, lateral, semi-lateral), and the strength of the  
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a)  b)  c)  d)  

e)  f)  g)  h)  

i)  j)  k)  l)  

Figure 4-11 The Chan–Vese comparison segmentation results of the image (135) in database 

ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014). (a) The original 

background subtracted image, with the zoomed part indicated by a black square around the 

polyp. (b) The given database mask. (c, e, g, i, k) The original (unfiltered image), mean, 

median, Gaussian, and Wiener filtered images results in the post pre-processing with 

rectangular initial mask case. (d, f, h, j, l) The original (unfiltered image), mean, median, 

Gaussian, and Wiener filtered images results in the modified rectangular initial mask and 

tuned parameters case with 100 iterations. The colors connotations: white is the matching 

area between the given database mask and the resulted segmented area, pink is the remaining 

area of the given mask that was not covered by the segmented area, and green is an 

additional area of the segmented area 

 

polyp's edges could also contribute to this irregular performance. Moreover, the masks given 

by the databases were drawn manually and some of them did not match the borderline of the 

polyps perfectly, thus if our method went closer to the ideal contour than the manually drawn 

mask, then the Sørensen–Dice metric showed a worse result than expected. 

For the database ETIS-Larib Polyp DB (Silva, Histace, Romain, Dray, & Granado, 2014) 

images which have the largest size, the improvement in the performance of the geodesic method 

with increasing the iterations number was evident in (38 out of 40) values of the total similarity 

coefficients in the case of 200 and 300 iterations. The Chan–Vese method improved just for 

(19) values of the total coefficients. However, as the decrease in the performance of the Chan-
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Vese method in the case of image 49 was due to a reflection at the borderline of the polyp, a 

general conclusion can be drawn; the higher number of iterations is optimal for this database. 

For the database CVC-ColonDB (Bernal, Sanchez, & Vilariño, 2012) images which have 

a medium size, most of the similarity coefficients values increased in the case of 200 iterations, 

(15 out of 20) and (17 out of 20) for the geodesic and Chan–Vese methods respectively. Then 

a decrease followed in the case of 300 iterations: (17 out of 20) and (15 out of 20) of the total 

similarity coefficients values decreased using the geodesic and Chan–Vese methods 

respectively. In this case, the 200 iterations seem to be an optimum. The exception for this 

tendency is the blurry image 202 with not strong enough edges, thus the geodesic method cannot 

really find optimum.  

For the database CVC-ClinicDB (Bernal J. , et al., 2015) images which have the smallest 

size, 70% and 75% of the total similarity coefficients became lower in the case of applying 

200 and 300 iterations compared to the case of 100 iterations with the geodesic and Chan–Vese 

methods respectively. Here, less clearly than in the previous case, the 100 iterations seem to be 

the optimal choice. 

 

4.4.7 Special cases 

Many cases were studied to extend the experiments and expand the field of investigation, by 

using additional samples with different characteristics and features. All of the following special 

cases were analyzed using the previously selected tuned parameters. 

Firstly, it was studied what happens if the masks are not located around the polyps, by 

testing the performance of three alternative initial mask locations. 

In the first case, the starting mask was initialized around some fairly smooth region far 

away from the polyp area to be segmented. This case produced undesired segmentation results, 

the geodesic method could not find any contour to shrink on, so it remained more or less the 

same as the initial mask. In the case of the Chan-Vese method, the resulting masks were mostly 

covering one or multiple regions between visible veins or folds, and the method failed both to 

find the polyp, and to indicate that the mask is located in a wrong area.  

In the second case, when the initial and ground-truth masks only partially overlapped, the 

Chan-Vese method expanded toward the polyp area. However, if one or more, fairly 

homogeneous areas were included into the initial mask, it kept evolving towards these areas, 

too, and they remained as separate parts of the result. The geodesic method, similarly to the 
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first case (without overlap), did not change much compared to the initial mask, only on the side 

of the polyp, if the borderlines were strong enough.  

If multiple polyps were present in the image, and the initial mask was one joint mask 

instead of two separate ones, the methods also failed to find the polyps. In the case of multiple 

polyps, at least one of the polyps had only partially visible borderlines, and very similar colour 

to the background. As more prominent edges and colour regions were due to the folding of the 

bowel than due to the polyps themselves, these methods were not suitable to separate them, 

even if theoretically they can distinguish multiple objects. 

These studies showed the sensitivity of the methods to the initial mask location. 

As a final step, the colour sensitivity was also studied. In the case of an advanced stage 

polyp, the polyp colour is different from the colour of the background, whereas in early stages, 

the polyp and the background usually have the same colour. Analysis showed that for darker 

colored polyps, even the background subtraction is not necessary, the methods find the polyps 

rather well for both the original, and the background subtracted images. As an example of an 

advanced stage colorectal polyp, the results for image 516 with dark polyp from the database 

CVC-ClinicDB (Bernal J. , et al., 2015) are shown in Figure 4-12. The other examples in this 

chapter were all on images with polyps having the same colour as the bowel around them. 

 

  

Figure 4-12 Darker polyp example: image 516 in database CVC-ClinicDB (Bernal J. , et al., 

2015). Sørensen–Dice Coefficient of the modified rectangular initial mask and tuned 

parameters case with 100, 200, and 300 iterations. Separate initial masks were used for the 

Chan–Vese and for the geodesic method. The order of the columns’ colors is in the same 

order as in the bottom of the figures: background subtracted, mean, median, Gaussian and 

Wiener filtered images 
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4.5 Thesis statements 

4.5.1 Thesis 5 

For colorectal polyp segmentation purposes, I systematically evaluated the performance of the 

geodesic and Chan–Vese as two variational segmentation methods using image samples of 3 

publicly available databases (including some special problematic cases). 

A. I tested the outputs of different pre-filtering techniques as potential inputs for both 

segmentation methods using Sørensen-Dice Index (SDI) metric. I found that the 

background-subtracted, mean, median, Gaussian, and Wiener filtered images are the 

best candidates for improving the segmentation results. 

B. I investigated the effect of the initial mask shape on the segmentation results using 

Sørensen-Dice index metric. Circular and rectangular initial masks were evaluated. I 

concluded that for the geodesic method in 91.67% of the cases the rectangular masks 

were more beneficial, while for the Chan Vese method, in 50% of the cases. The Chan-

Vese method demonstrated lower sensitivity to the shape of the initial mask than the 

geodesic method. 

The Geodesic method with the rectangular initial mask provided the best Sørensen-Dice 

index for most of the cases. If the Chan-Vese method gave better result, the difference 

between the geodesic and Chan–Vese Sørensen-Dice indices was very small. 

C. I studied the influence of the initial mask size together with the smoothness factor, 

contraction bias, and the number of iterations on the segmentation results. The geodesic 

approach achieved the best performance using an initial mask encompassing the 

boundaries of the polyp to be segmented with a contraction bias value which makes the 

contour shrink towards the polyp area, while the Chan–Vese approach accomplished the 

best results using an initial mask located within the polyp region with a contraction bias 

value which makes the contour expand towards the polyp. The suitable number of 

iterations ranged from 100 to 300 depending on different image and polyp sizes, 

although other factors including the strength of colorectal polyp edges or presence of 

veins also played a significant role. 

D. I concluded that, in most of the cases, the Chan–Vese method performed better than the 

geodesic method in matching the actual contour of the polyps, but it depended more on 

the effectiveness of the pre-processing procedure. 
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5. Outlook and future work  

In the future the fuzzy classification method needs a more thorough investigation on the selec-

tion of the antecedents, probably also the introduction of some new antecedents, or using ante-

cedents from both RGB and HSV images. It seems, that using the characteristic points of the 

𝛼 = 0 and 𝛼 = 1 cuts of the rules with the same weight in the selection of the reduced number 

of antecedents is not effective enough, another weighting, or another selection criterion is 

needed. Using clustering methods, such as fuzzy c-means clustering can improve the fitting of 

the rules to the data of the training set. 

Also, a study on the borderlines of the output classes based on their polyp content might 

be necessary, as an image segment with very small percentage of polyp might be dominated by 

the statistics of the polypless class for some of the antecedents, while in other antecedents the 

polyp contour’s appearance might be the most important factor. Clustering methods might also 

improve the selection of the number of necessary consequents. 

Moreover, as the number of available databases increased during my study, it is necessary 

to check the applicability of the method to the new databases. 

In the future, a parallelization of the Hough transform is needed to decrease the calcula-

tion time and especially the optimization of its 3D local maximum search is necessary. As the 

fuzzy and classical transforms are built from very basic program elements, and no advanced 

components are used, it is worth implementing them in C, python or Cuda to allow to run them 

on parallel computers. 

Finally, as this field of medical image processing is currently dominated by artificial in-

telligence methods, especially by neural network-based approaches, it might be necessary to 

develop and test alternatives of some components of my methods using neural networks . 
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Appendix A 

The histograms of all 99 antecedents using RGB color space, together with the mean-, median-centered, and 

histogram-fitted 1% triangular rules for the 2, 3, and 4 consequent classes. The consequent classes are plotted with 

the following colors. Red: yes polyp (with the highest threshold in the area percentage). Magenta: yes polyp, with 

50% or lower percentage. Blue: Yes polyp with 20% or lower percentage in the area of the tile. Black: no polyp. 

The line types mean the following: No line, circle marker: the histogram. Continuous line: mean-centered rules. 

Dotted line: median-centered rules. Dashed lines: histogram-fitted rule. 
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Appendix B 

The histograms of all 99 antecedents using HSV color space, together with the mean-, median-centered, and 

histogram-fitted 1% triangular rules for the 2, 3, and 4 consequent classes. The consequent classes are plotted with 

the following colors. Red: yes polyp (with the highest threshold in the area percentage). Magenta: yes polyp, with 

50% or lower percentage. Blue: Yes polyp with 20% or lower percentage in the area of the tile. Black: no polyp. 

The line types mean the following: No line, circle marker: the histogram. Continuous line: mean-centered rules. 

Dotted line: median-centered rules. Dashed lines: histogram-fitted rule. 
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Appendix C 

All test samples and their masks which were used in Section 3.4 are given in this appendix. 

    
29 201 

    
111 150 

    
188 217 

    
265 390 

    
475 480 

    
503 504 

Figure C-1 The test samples for database CVC-Clinic and their ground truth masks 
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149 220 

    
230 283 

Figure C-2 The test samples for database CVC-Colon and their ground truth masks 
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Figure C-3 The test samples for database ETIS-Larib and their ground truth masks 
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Appendix D 

Abbreviations and nomenclature table for the proposed method of Chapter 3 is given in this 

appendix. 

𝑅_𝑐𝑎𝑙𝑐 (3.14) 
A ratio to represent the quality of the edge detection method regarding the 

calculation efficiency of Hough transforms and polyp detection  

𝑅_𝑒𝑑𝑔𝑒 (3.15) 
A ratio to measure the goodness of the edge pixels finding the ideal polyp 

contour 

𝜎 
𝜎 = 3,5,7,9,11,13 and 15 are the chosen values for the width of the voting 

membership function of the fuzzy Hough transforms 

𝑃𝑝 
𝑃𝑝 = 50%, 60%, 70%, 80%, and 90% are the peak percentage values of the 

selected local maximum thresholds of the global maximum of the votes 

𝑁𝑡𝑜𝑡𝑎𝑙 The total number of the final resulting circles 

𝑁𝑟𝑖𝑛𝑔 The number of final circles within the ring mask 

𝐴𝑟 (3.16) A metric to measure the effectiveness of finding polyp-related final circles 

𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 
The minimum and maximum coordinates of the ground truth mask points in 

𝑥 direction 

𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 
The minimum and maximum coordinates of the ground truth mask points in 

𝑦 direction 

𝑟𝑎𝑣𝑔 (3.17) Average radius of the polyp mask 

(𝑐𝑥, 𝑐𝑦) (3.18) The 𝑥 and 𝑦 coordinates of the center of the polyp mask 

Δ𝑟𝑎𝑑𝑖𝑎𝑙 (3.19) The radial displacement of mask contour point (𝑚𝑥, 𝑚𝑦) 

δ𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 (3.20) The maximum of the roundness error 

Original The full Hough transforms for all the edge points 

Wide 
The restricted Hough transforms for the edge points with normalized gradient 

values within a wide threshold interval [0.06, 0.3] 

Thin 
The restricted Hough transforms for the edge points with normalized gradient 

values within a thin threshold interval [0.08, 0.2] 

 

 


